6.2 Binomial Coefficients and Counting Methods 297
(
n
m
)
q
=
(
n− 1
m
)
q
+qn−m
(
n− 1
m− 1
)
q
,
gives rise to what is called theq-Pascal triangle.
859.Prove that
(
2 k
k
)
=
2
π
∫ π 2
0
(2 sinθ)^2 kdθ.
860.Consider the triangularn×nmatrix
A=
⎛
⎜⎜
⎜⎜
⎜
⎝
111 ··· 1
011 ··· 1
001 ··· 1
..
.
..
.
..
.
... ..
.
000 ··· 1
⎞
⎟⎟
⎟⎟
⎟
⎠
.
Compute the matrixAk,k≥1.
861.Let(Fn)nbe the Fibonacci sequence,F 1 =F 2 =1,Fn+ 1 =Fn+Fn− 1. Prove that
for any positive integern,
F 1
(
n
1
)
+F 2
(
n
2
)
+···+Fn
(
n
n
)
=F 2 n.
862.For an arithmetic sequencea 1 ,a 2 ,...,an,...,letSn=a 1 +a 2 +···+an,n≥1.
Prove that
∑n
k= 0
(
n
k
)
ak+ 1 =
2 n
n+ 1
Sn+ 1.
863.Show that for any positive integern, the number
Sn=
(
2 n+ 1
0
)
· 22 n+
(
2 n+ 1
2
)
· 22 n−^2 · 3 +···+
(
2 n+ 1
2 n
)
· 3 n
is the sum of two consecutive perfect squares.
864.For a positive integerndefine the integersan,bn, andcnby
an+bn^3
√
2 +cn^3
√
4 =( 1 +^3
√
2 +^3
√
4 )n.
Prove that
2 −
n 3 ∑n
k= 0
(
n
k
)
ak=
⎧
⎪⎨
⎪⎩
an ifn≡ 0 (mod 3),
bn^3
√
2ifn≡ 2 (mod 3),
cn^3
√
4ifn≡ 1 (mod 3).