Advanced book on Mathematics Olympiad

(ff) #1
6.2 Binomial Coefficients and Counting Methods 297
(
n
m

)

q

=

(

n− 1
m

)

q

+qn−m

(

n− 1
m− 1

)

q

,

gives rise to what is called theq-Pascal triangle.


859.Prove that
(
2 k
k


)

=

2

π

∫ π 2

0

(2 sinθ)^2 kdθ.

860.Consider the triangularn×nmatrix


A=


⎜⎜

⎜⎜



111 ··· 1

011 ··· 1

001 ··· 1

..

.

..

.

..

.

... ..

.

000 ··· 1


⎟⎟

⎟⎟



.

Compute the matrixAk,k≥1.

861.Let(Fn)nbe the Fibonacci sequence,F 1 =F 2 =1,Fn+ 1 =Fn+Fn− 1. Prove that
for any positive integern,


F 1

(

n
1

)

+F 2

(

n
2

)

+···+Fn

(

n
n

)

=F 2 n.

862.For an arithmetic sequencea 1 ,a 2 ,...,an,...,letSn=a 1 +a 2 +···+an,n≥1.
Prove that
∑n


k= 0

(

n
k

)

ak+ 1 =

2 n
n+ 1

Sn+ 1.

863.Show that for any positive integern, the number


Sn=

(

2 n+ 1
0

)

· 22 n+

(

2 n+ 1
2

)

· 22 n−^2 · 3 +···+

(

2 n+ 1
2 n

)

· 3 n

is the sum of two consecutive perfect squares.

864.For a positive integerndefine the integersan,bn, andcnby


an+bn^3


2 +cn^3


4 =( 1 +^3


2 +^3


4 )n.
Prove that

2 −

n 3 ∑n
k= 0

(

n
k

)

ak=


⎪⎨

⎪⎩

an ifn≡ 0 (mod 3),
bn^3


2ifn≡ 2 (mod 3),
cn^3


4ifn≡ 1 (mod 3).
Free download pdf