Advanced book on Mathematics Olympiad

(ff) #1

304 6 Combinatorics and Probability


880.Prove the combinatorial identity


∑n

k= 1

k

(

n
k

) 2

=n

(

2 n− 1
n− 1

)

.

881.Prove the identity


∑m

k= 0

(

m
k

)(

n+k
m

)

=

∑m

k= 0

(

m
k

)(

n
k

)

2 k.

882.For integers 0≤k≤n,1≤m≤n, prove the identity


∑m

j= 0

(

m
i

)(

n−i
k

)

=

∑m

i= 0

(

m
i

)(

n−m
k−i

)

2 m−i.

883.Show that for any positive integerspandq,


∑q

k= 0

1

2 p+k

(

p+k
k

)

+

∑p

k= 0

1

2 q+k

(

q+k
k

)

= 2.

884.Letcn=


( n
n/ 2 

)

. Prove that


∑n

k= 0

(

n
k

)

ckcn−k=cncn+ 1.

885.Letpandqbe odd, coprime positive integers. Setp′=p− 21 andq′=q− 21. Prove
the identity
(⌊
q
p



+


2 q
p


+···+


p′q
p

⌋)

+

(⌊

p
q


+


2 p
q


+···+


q′p
p

⌋)

=p′q′.

Now we turn to more diverse counting arguments.

Example.What is the number of ways of writing the positive integernas an ordered sum
ofmpositive integers?


Solution.This is a way of saying that we have to count the number ofm-tuples of
positive integers(x 1 ,x 2 ,...,xm)satisfying the equationx 1 +x 2 +···+xm=n. These
m-tuples are in one-to-one correspondence with the strictly increasing sequences 0<
y 1 <y 2 <···<ym=nof positive integers, with the correspondence given byy 1 =x 1 ,
y 2 =x 1 +x 2 ,...,ym=x 1 +x 2 +···+xm. The numbersy 1 ,y 2 ,...,ym− 1 can be chosen
in


(n− 1
m− 1

)

ways from 1, 2 ,...,n−1. Hence the answer to the question is

(n− 1
m− 1

)

.
Free download pdf