304 6 Combinatorics and Probability
880.Prove the combinatorial identity
∑nk= 1k(
n
k) 2
=n(
2 n− 1
n− 1)
.
881.Prove the identity
∑mk= 0(
m
k)(
n+k
m)
=
∑mk= 0(
m
k)(
n
k)
2 k.882.For integers 0≤k≤n,1≤m≤n, prove the identity
∑mj= 0(
m
i)(
n−i
k)
=
∑mi= 0(
m
i)(
n−m
k−i)
2 m−i.883.Show that for any positive integerspandq,
∑qk= 01
2 p+k(
p+k
k)
+
∑pk= 01
2 q+k(
q+k
k)
= 2.
884.Letcn=
( n
n/ 2 )
. Prove that
∑nk= 0(
n
k)
ckcn−k=cncn+ 1.885.Letpandqbe odd, coprime positive integers. Setp′=p− 21 andq′=q− 21. Prove
the identity
(⌊
q
p
⌋
+
⌊
2 q
p⌋
+···+
⌊
p′q
p⌋)
+
(⌊
p
q⌋
+
⌊
2 p
q⌋
+···+
⌊
q′p
p⌋)
=p′q′.Now we turn to more diverse counting arguments.Example.What is the number of ways of writing the positive integernas an ordered sum
ofmpositive integers?
Solution.This is a way of saying that we have to count the number ofm-tuples of
positive integers(x 1 ,x 2 ,...,xm)satisfying the equationx 1 +x 2 +···+xm=n. These
m-tuples are in one-to-one correspondence with the strictly increasing sequences 0<
y 1 <y 2 <···<ym=nof positive integers, with the correspondence given byy 1 =x 1 ,
y 2 =x 1 +x 2 ,...,ym=x 1 +x 2 +···+xm. The numbersy 1 ,y 2 ,...,ym− 1 can be chosen
in
(n− 1
m− 1)
ways from 1, 2 ,...,n−1. Hence the answer to the question is(n− 1
m− 1