364 Algebra=
(
x
y+
y
x) 2
+
(
y
z+
z
y) 2
+
(
z
x+
x
z) 2
− 4.
Hencem^2 +n^2 +p^2 =mnp+ 4.Adding 2(mn+np+pm)to both sides yields
(m+n+p)^2 =mnp+ 2 (mn+np+pm)+ 4.Adding now 4(m+n+p)+4 to both sides gives
(m+n+p+ 2 )^2 =(m+ 2 )(n+ 2 )(p+ 2 ).It follows that(m+ 2 )(n+ 2 )(p+ 2 )= 20042.But 2004= 22 × 3 ×167, and a simple case analysis shows that the only possibilities are
(m+ 2 ,n+ 2 ,p+ 2 )=( 4 , 1002 , 1002 ),( 1002 , 4 , 1002 ),( 1002 , 1002 , 4 ). The desired
triples are( 2 , 1000 , 1000 ),( 1000 , 2 , 1000 ),( 1000 , 1000 , 2 ).
(proposed by T. Andreescu for the 43rd International Mathematical Olympiad, 2002)
94.LetM(a,b)=max(a^2 +b, b^2 +a). ThenM(a,b)≥a^2 +bandM(a,b)≥b^2 +a,
so 2M(a,b)≥a^2 +b+b^2 +a. It follows that2 M(a,b)+1
2
≥
(
a+1
2
) 2
+
(
b+1
2
) 2
≥ 0 ,
henceM(a,b)≥−^14. We deduce thatmin
a,b∈R
M(a,b)=−1
4
,
which, in fact, is attained whena=b=−^12.
(T. Andreescu)
95.Leta= 2 xandb= 3 x. We need to show thata+b−a^2 +ab−b^2 ≤ 1.But this is equivalent to0 ≤1
2
[
(a−b)^2 +(a− 1 )^2 +(b− 1 )^2