Advanced book on Mathematics Olympiad

(ff) #1
Algebra 367

1
2

±x+x^2 ±x^3 +x^4 ±···±x^2 k−^1 +x^2 k> 0 ,

for all 2kchoices of the signs+and−. This reduces to
(
1
2

±x+

1

2

x^2

)

+

(

1

2

x^2 ±x^3 +

1

2

x^4

)

+···+

(

1

2

x^2 k−^2 ±x^2 k−^1 +

1

2

x^2 k

)

+

1

2

x^2 k> 0 ,

which is true because^12 x^2 k−^2 ±x^2 k−^1 +^12 x^2 k=^12 (xk−^1 ±xk)^2 ≥0 and^12 x^2 k≥0, and
the equality cases cannot hold simultaneously.
103.This is the Cauchy–Schwarz inequality applied to the numbersa 1 =a


b, a 2 =
b


c, a 3 =c


aandb 1 =c


b, b 2 =a


c, b 3 =b


a. Indeed,

9 a^2 b^2 c^2 =(abc+abc+abc)^2 =(a 1 b 1 +a 2 b 2 +a 3 b 3 )^2
≤(a 12 +a^22 +a 32 )(b^21 +b^22 +b 32 )=(a^2 b+b^2 c+c^2 a)(c^2 b+a^2 c+b^2 a).

104.By the Cauchy–Schwarz inequality,

(a 1 +a 2 +···+an)^2 ≤( 1 + 1 +···+ 1 )(a^21 +a 22 +···+a^2 n).

Hencea^21 +a 22 +···+an^2 ≥n. Repeating, we obtain

(a 12 +a 22 +···+a^2 n)^2 ≤( 1 + 1 +···+ 1 )(a^41 +a 24 +···+an^4 ),

which shows thata^41 +a 24 +···+an^4 ≥n, as desired.
105.Apply Cauchy–Schwarz:

(a 1 aσ(a)+a 2 aσ( 2 )+···+anaσ (n))^2 ≤(a^21 +a 22 +···+a^2 n)(aσ( 1 )+aσ( 2 )+···+a^2 σ (n))


=(a^21 +a 22 +···+an^2 )^2.

The maximum isa 12 +a^22 +···+an^2. The only permutation realizing it is the identity
permutation.
106.Applying the Cauchy–Schwarz inequality to the numbers


f 1 x 1 ,


√ f^2 x^2 ,...,
fnxnand


f 1 ,


f 2 ,...,


fn, we obtain

(f 1 x^21 +f 2 x^22 +···+fnxn^2 )(f 1 +f 2 +···+fn)≥(f 1 x 1 +f 2 x 2 +···+fnxn)^2 ,

hence the inequality from the statement.
Free download pdf