Algebra 371
a
d
b
c
a
c
b
d
a
d b c
Figure 59
Foru/∈D 2 , the triangle inequality gives
|u−λi|≥|u−c|−|c−λi|>R+|k|−R=|k|.
Hence|u−|k|λi|<1, fori= 1 , 2 ,...,n. For such auwe then have
|nP (u)−kP′(u)|=
∣
∣∣
∣∣nP (u)−kP (u)
∑n
i= 1
1
u−λi
∣
∣∣
∣∣=|P (u)|
∣
∣∣
∣∣n−k
∑n
i= 1
1
u−λi
∣
∣∣
∣∣
≥|P (u)|
∣
∣
∣∣
∣
n−
∑n
i= 1
|k|
|u−λi|
∣
∣
∣∣
∣
,
where the last inequality follows from the triangle inequality.
But we have seen that
n−
∑n
i= 1
|k|
|u−λi|
=
∑n
i= 1
(
1 −
|k|
|u−λi|
)
> 0 ,
and sinceP (u) =0, it follows thatucannot be a root ofnP (u)−kP′(u). Thus all roots
of this polynomial lie inD 2.
(17th W.L. Putnam Mathematical Competition, 1956)
116.The inequality in the statement is equivalent to
(a^2 +b^2 +c^2 )^2 < 4 (a^2 b^2 +b^2 c^2 +c^2 a^2 ).
The latter can be written as
0 <( 2 bc)^2 −(a^2 −b^2 −c^2 )^2 ,
or
( 2 bc+b^2 +c^2 −a^2 )( 2 bc−b^2 −c^2 +a^2 ).