Algebra 371ad
bcacbd
a
d b cFigure 59Foru/∈D 2 , the triangle inequality gives|u−λi|≥|u−c|−|c−λi|>R+|k|−R=|k|.Hence|u−|k|λi|<1, fori= 1 , 2 ,...,n. For such auwe then have
|nP (u)−kP′(u)|=∣
∣∣
∣∣nP (u)−kP (u)∑ni= 11
u−λi∣
∣∣
∣∣=|P (u)|∣
∣∣
∣∣n−k∑ni= 11
u−λi∣
∣∣
∣∣
≥|P (u)|∣
∣
∣∣
∣
n−∑ni= 1|k|
|u−λi|∣
∣
∣∣
∣
,
where the last inequality follows from the triangle inequality.
But we have seen that
n−∑ni= 1|k|
|u−λi|=
∑ni= 1(
1 −
|k|
|u−λi|)
> 0 ,
and sinceP (u) =0, it follows thatucannot be a root ofnP (u)−kP′(u). Thus all roots
of this polynomial lie inD 2.
(17th W.L. Putnam Mathematical Competition, 1956)
116.The inequality in the statement is equivalent to
(a^2 +b^2 +c^2 )^2 < 4 (a^2 b^2 +b^2 c^2 +c^2 a^2 ).The latter can be written as
0 <( 2 bc)^2 −(a^2 −b^2 −c^2 )^2 ,or
( 2 bc+b^2 +c^2 −a^2 )( 2 bc−b^2 −c^2 +a^2 ).