Algebra 423
223.We know thatAA∗=A∗A=(detA)I 3 ,soifAis invertible then so isA∗, and
A=detA(A∗)−^1. Also, detAdetA∗=(detA)^3 ; hence detA∗=(detA)^2. Therefore,
A=±
√
detA∗(A∗)−^1.
Because
A∗=( 1 −m)
⎛
⎝
−m− 11 1
1 −m− 11
11 −m− 1
⎞
⎠,
we have
detA∗=( 1 −m)^3 [−(m+ 1 )^3 + 2 + 3 (m+ 1 )]=( 1 −m)^4 (m+ 2 )^2.
Using the formula with minors, we compute the inverse of the matrix
⎛
⎝
−m− 11 1
1 −m− 11
11 −m− 1
⎞
⎠
to be
1
( 1 −m)(m+ 2 )^2
⎛
⎝
−m^2 −m− 2 m+ 2 m+ 2
m+ 2 −m^2 −m− 2 m+ 2
m+ 2 m+ 2 −m^2 −m− 2
⎞
⎠.
Then(A∗)−^1 is equal to this matrix divided by( 1 −m)^3. Consequently, the matrix we
are looking for is
A=±
√
detA∗(A∗)−^1
=±
1
( 1 −m)^2 (m+ 2 )
⎛
⎝
−m^2 −m− 2 m+ 2 m+ 2
m+ 2 −m^2 −m− 2 m+ 2
m+ 2 m+ 2 −m^2 −m− 2
⎞
⎠.
(Romanian mathematics competition)
224.The series expansion
1
1 −x
= 1 +x+x^2 +x^3 +···
suggests that
(In−A)−^1 =In+A+A^2 +A^3 +···.
But does the series on the right converge?