Advanced book on Mathematics Olympiad

(ff) #1
Algebra 423

223.We know thatAA∗=A∗A=(detA)I 3 ,soifAis invertible then so isA∗, and
A=detA(A∗)−^1. Also, detAdetA∗=(detA)^3 ; hence detA∗=(detA)^2. Therefore,
A=±



detA∗(A∗)−^1.
Because

A∗=( 1 −m)



−m− 11 1
1 −m− 11
11 −m− 1


⎠,

we have


detA∗=( 1 −m)^3 [−(m+ 1 )^3 + 2 + 3 (m+ 1 )]=( 1 −m)^4 (m+ 2 )^2.

Using the formula with minors, we compute the inverse of the matrix


−m− 11 1
1 −m− 11
11 −m− 1



to be


1
( 1 −m)(m+ 2 )^2



−m^2 −m− 2 m+ 2 m+ 2
m+ 2 −m^2 −m− 2 m+ 2
m+ 2 m+ 2 −m^2 −m− 2


⎠.

Then(A∗)−^1 is equal to this matrix divided by( 1 −m)^3. Consequently, the matrix we
are looking for is


A=±


detA∗(A∗)−^1


1

( 1 −m)^2 (m+ 2 )



−m^2 −m− 2 m+ 2 m+ 2
m+ 2 −m^2 −m− 2 m+ 2
m+ 2 m+ 2 −m^2 −m− 2


⎠.

(Romanian mathematics competition)

224.The series expansion


1
1 −x
= 1 +x+x^2 +x^3 +···

suggests that


(In−A)−^1 =In+A+A^2 +A^3 +···.

But does the series on the right converge?

Free download pdf