424 Algebra
Let
α=max
i
⎛
⎝
∑n
j= 1
|aij|
⎞
⎠< 1.
Then
∑
k
∣
∣∣
∣∣
∣
∑
j
aijajk
∣
∣∣
∣∣
∣
≤
∑
j,k
|aijajk|=
∑
j
(
|aij|
∑
k
|ajk|
)
≤α
∑
j
|aij|≤α^2.
Inductively we obtain that the entriesaij(n)ofAnsatisfy
∑
j|aij(n)|<α
nfor alli.
Because the geometric series 1+α+α^2 +α^3 +···converges, so doesIn+A+A^2 +
A^3 +···.And the sum of this series is the inverse ofIn−A.
(P.N. de Souza, J.N. Silva,Berkeley Problems in Mathematics, Springer, 2004)
225.The trick is to computeA^2. The elements on the diagonal are
∑n
k= 1
sin^2 kmα, m= 1 , 2 ,...,n,
which are all nonzero. Off the diagonal, the(m, j )th entry is equal to
∑n
k= 1
sinkmαsinkj α=
1
2
[n
∑
k= 1
cosk(m−j)α−
∑n
k= 1
k(m+j)α
]
.
We are led to the computation of two sums of the form
∑n
k= 1 coskx. This is done as
follows:
∑n
k= 1
coskx=
1
2 sinx 2
∑n
k= 1
sin
x
2
coskx=
1
2 sinx 2
∑n
k= 1
[
sin
(
k+
1
2
)
x−sin
(
k−
1
2
x
)]
.
The sum telescopes, and we obtain
∑n
k= 1
coskx=
sin
(
n+^12
)
x
2 sinx 2
−
1
2
.
Note that forx=(m±j)α=(mn±+j)π 1 ,
sin
(
n+
1
2
)
x=sin
(
(m±j)π−
x
2
)
=(− 1 )m+j+^1 sin
x
2
.
Hence