Advanced book on Mathematics Olympiad

(ff) #1

424 Algebra


Let

α=max
i



∑n

j= 1

|aij|


⎠< 1.

Then



k


∣∣

∣∣



j

aijajk


∣∣

∣∣




j,k

|aijajk|=


j

(

|aij|


k

|ajk|

)

≤α


j

|aij|≤α^2.

Inductively we obtain that the entriesaij(n)ofAnsatisfy



j|aij(n)|<α
nfor alli.

Because the geometric series 1+α+α^2 +α^3 +···converges, so doesIn+A+A^2 +
A^3 +···.And the sum of this series is the inverse ofIn−A.
(P.N. de Souza, J.N. Silva,Berkeley Problems in Mathematics, Springer, 2004)


225.The trick is to computeA^2. The elements on the diagonal are


∑n

k= 1

sin^2 kmα, m= 1 , 2 ,...,n,

which are all nonzero. Off the diagonal, the(m, j )th entry is equal to


∑n

k= 1

sinkmαsinkj α=

1

2

[n

k= 1

cosk(m−j)α−

∑n

k= 1

k(m+j)α

]

.

We are led to the computation of two sums of the form


∑n
k= 1 coskx. This is done as
follows:


∑n

k= 1

coskx=

1

2 sinx 2

∑n

k= 1

sin

x
2

coskx=

1

2 sinx 2

∑n

k= 1

[

sin

(

k+

1

2

)

x−sin

(

k−

1

2

x

)]

.

The sum telescopes, and we obtain


∑n

k= 1

coskx=

sin

(

n+^12

)

x
2 sinx 2


1

2

.

Note that forx=(m±j)α=(mn±+j)π 1 ,


sin

(

n+

1

2

)

x=sin

(

(m±j)π−
x
2

)

=(− 1 )m+j+^1 sin
x
2

.

Hence

Free download pdf