424 Algebra
Letα=max
i⎛
⎝
∑nj= 1|aij|⎞
⎠< 1.
Then
∑k∣
∣∣
∣∣
∣
∑
jaijajk∣
∣∣
∣∣
∣
≤
∑
j,k|aijajk|=∑
j(
|aij|∑
k|ajk|)
≤α∑
j|aij|≤α^2.Inductively we obtain that the entriesaij(n)ofAnsatisfy
∑
j|aij(n)|<α
nfor alli.Because the geometric series 1+α+α^2 +α^3 +···converges, so doesIn+A+A^2 +
A^3 +···.And the sum of this series is the inverse ofIn−A.
(P.N. de Souza, J.N. Silva,Berkeley Problems in Mathematics, Springer, 2004)
225.The trick is to computeA^2. The elements on the diagonal are
∑nk= 1sin^2 kmα, m= 1 , 2 ,...,n,which are all nonzero. Off the diagonal, the(m, j )th entry is equal to
∑nk= 1sinkmαsinkj α=1
2
[n
∑k= 1cosk(m−j)α−∑nk= 1k(m+j)α]
.
We are led to the computation of two sums of the form
∑n
k= 1 coskx. This is done as
follows:
∑nk= 1coskx=1
2 sinx 2∑nk= 1sinx
2coskx=1
2 sinx 2∑nk= 1[
sin(
k+1
2
)
x−sin(
k−1
2
x)]
.
The sum telescopes, and we obtain
∑nk= 1coskx=sin(
n+^12)
x
2 sinx 2−
1
2
.
Note that forx=(m±j)α=(mn±+j)π 1 ,
sin(
n+1
2
)
x=sin(
(m±j)π−
x
2)
=(− 1 )m+j+^1 sin
x
2.
Hence