Advanced book on Mathematics Olympiad

(ff) #1
Algebra 427

3 (x 1 +x 2 +x 3 )+ 3 (x 4 +x 5 +x 6 )+···+ 3 (x 97 +x 98 +x 99 )+ 3 x 100 = 0.

The terms in the parentheses are all zero; hencex 100 =0. Taking cyclic permutations
yieldsx 1 =x 2 = ··· =x 100 =0.
232.Ifyis not an eigenvalue of the matrix



⎜⎜

01001

10100

01010

00101

10010




⎟⎟


,

then the system has the unique solutionx 1 =x 2 =x 3 =x 4 =x 5 =0. Otherwise, the
eigenvectors give rise to nontrivial solutions. Thus, we have to compute the determinant
∣∣
∣∣

∣∣
∣∣

−y 1001
1 −y 100
01 −y 10
001 −y 1
1001 −y

∣∣

∣∣


∣∣

∣∣


.

Adding all rows to the first and factoring 2−y, we obtain


( 2 −y)


∣∣

∣∣

∣∣


∣∣

11111

1 −y 100
01 −y 10
00 1−y 1
1001 −y


∣∣

∣∣

∣∣


∣∣

.

The determinant from this expression is computed using row–column operations as fol-
lows:
∣∣
∣∣

∣∣
∣∣

11111

1 −y 100
01 −y 10
00 1−y 1
1001 −y

∣∣

∣∣


∣∣

∣∣


=

∣∣

∣∣


∣∣

∣∣


10 00 0

1 −y− 10 − 1 − 1
01 −y 10
00 1−y 1
1 − 1 − 10 −y− 1

∣∣

∣∣


∣∣

∣∣


=


∣∣

∣∣


∣∣

−y− 10 − 1 − 1
1 −y 10
01 −y 1
− 1 − 10 −y− 1


∣∣

∣∣


∣∣

=


∣∣

∣∣


∣∣

−y− 10 − 1 − 1
−y −y 0 − 1
01 −y− 1
− 10 −y−y


∣∣

∣∣


∣∣
Free download pdf