Algebra 427
3 (x 1 +x 2 +x 3 )+ 3 (x 4 +x 5 +x 6 )+···+ 3 (x 97 +x 98 +x 99 )+ 3 x 100 = 0.
The terms in the parentheses are all zero; hencex 100 =0. Taking cyclic permutations
yieldsx 1 =x 2 = ··· =x 100 =0.
232.Ifyis not an eigenvalue of the matrix
⎛
⎜
⎜
⎜⎜
⎝
01001
10100
01010
00101
10010
⎞
⎟
⎟
⎟⎟
⎠
,
then the system has the unique solutionx 1 =x 2 =x 3 =x 4 =x 5 =0. Otherwise, the
eigenvectors give rise to nontrivial solutions. Thus, we have to compute the determinant
∣∣
∣∣
∣
∣∣
∣∣
∣
−y 1001
1 −y 100
01 −y 10
001 −y 1
1001 −y
∣∣
∣∣
∣
∣∣
∣∣
∣
.
Adding all rows to the first and factoring 2−y, we obtain
( 2 −y)
∣
∣∣
∣∣
∣∣
∣
∣∣
11111
1 −y 100
01 −y 10
00 1−y 1
1001 −y
∣
∣∣
∣∣
∣∣
∣
∣∣
.
The determinant from this expression is computed using row–column operations as fol-
lows:
∣∣
∣∣
∣
∣∣
∣∣
∣
11111
1 −y 100
01 −y 10
00 1−y 1
1001 −y
∣∣
∣∣
∣
∣∣
∣∣
∣
=
∣∣
∣∣
∣
∣∣
∣∣
∣
10 00 0
1 −y− 10 − 1 − 1
01 −y 10
00 1−y 1
1 − 1 − 10 −y− 1
∣∣
∣∣
∣
∣∣
∣∣
∣
=
∣
∣∣
∣∣
∣
∣∣
−y− 10 − 1 − 1
1 −y 10
01 −y 1
− 1 − 10 −y− 1
∣
∣∣
∣∣
∣
∣∣
=
∣
∣∣
∣∣
∣
∣∣
−y− 10 − 1 − 1
−y −y 0 − 1
01 −y− 1
− 10 −y−y