Advanced book on Mathematics Olympiad

(ff) #1

482 Real Analysis


then this will equal the square of the limit under discussion. We use the Cesàro–Stolz
theorem.
Suppose 0<x 0 ≤1 (the casesx 0 <0 andx 0 =0 being trivial; see above). If
0 <xn ≤1, then 0<arcsin(sin^2 xn)<arcsin(sinxn)=xn,so0<xn+ 1 <xn.It
follows by induction onnthatxn∈( 0 , 1 ]for allnandxndecreases to 0. Rewriting the
recurrence as sinxn+ 1 =sinxn



1 −sin^4 xn−sin^2 xncosxngives

1
sinxn+ 1


1

sinxn

=

sinxn−sinxn+ 1
sinxnsinxn+ 1

=

sinxn−sinxn


1 −sin^4 xn+sin^2 xncosxn
sinxn(sinxn


1 −sin^4 xn−sin^2 xncosxn)

=

1 −


1 −sin^4 xn+sinxncosxn
sinxn


1 −sin^4 xn−sin^2 xncosxn

=

sin^4 xn
1 +


1 −sin^4 xn
+sinxncosxn

sinxn


1 −sin^4 xn−sin^2 xncosxn

=

sin^3 xn
1 +


1 −sin^4 xn

+cosxn

1 −sin^4 xn−sinxncosxn

.

Hence


lim
n→∞

(

1

sinxn+ 1


1

sinxn

)

= 1.

From the Cesàro–Stolz theorem it follows that limn→∞nsin^1 xn =1, and so we have
limn→∞nxn=1.
(Gazeta Matematic ̆a (Mathematics Gazette, Bucharest), 2002, proposed by
T. Andreescu)


344.We compute the square of the reciprocal of the limit, namely limn→∞nx^12 n. To this


end, we apply the Cesàro–Stolz theorem to the sequencesan=x^12 nandbn=n. First,
note that limn→∞xn=0. Indeed, in view of the inequality 0<sinx<xon( 0 ,π), the
sequence is bounded and decreasing, and the limitLsatisfiesL=sinL,soL=0. We
then have


lim
n→∞

(

1

x^2 n+ 1


1

xn^2

)

=lim
n→∞

(

1

sin^2 xn


1

xn^2

)

=lim
n→∞

xn^2 −sin^2 xn
x^2 nsin^2 xn

=lim
xn→ 0

xn^2 −^12 ( 1 −cos 2xn)
1
2 x
n^2 (^1 −cos 2xn) =xlimn→^0

2 xn^2 −

[

( 2 xn)^2
2! −

( 2 xn)^4
4! +···

]

xn^2

[

( 2 xn)^2
2! −

( 2 xn)^4
4! +···

]
Free download pdf