Real Analysis 485
Let us write
lim
n→∞
ank+^1
nk
=
⎛
⎝lim
n→∞
a
k+k 1
n
n
⎞
⎠
k
.
Using the Cesàro–Stolz theorem, we have
lim
n→∞
a
k+k 1
n
n
=lim
n→∞
a
k+k 1
n+ 1 −a
k+k 1
n
n+ 1 −n
=lim
n→∞
k
√
akn++^11 −k
√
akn+^1
=nlim→∞
akn++^11 −akn+^1
(
k
√
akn++^11
)k− 1
+
(
k
√
akn++^11
)k− 2
√kak+ 1
n +···+
(
√kak+ 1
n
)k− 1
=lim
n→∞
(an+ 1 −an)(ank+ 1 +akn+−^11 an+···+ank)
(
k
√
akn++^11
)k− 1
+
(
k
√
akn++^11
)k− 2
√kak+ 1
n +···+
(
√kak+ 1
n
)k− 1
=nlim→∞
akn+ 1 +akn−+^11 an+···+ank
√kan
((
k
√
ank++ 11
)k− 1
+
(
k
√
ank++ 11
)k− 2
√kak+ 1
n +···+
(
√kak+ 1
n
)k− 1
).
Dividing both sides byank, we obtain
lim
n→∞
a
k+k 1
n
n
= lim
n→∞
(
an+ 1
an
)k
+
(
an+ 1
an
)k− 1
+···+ 1
(
an+ 1
an
)(k+^1 )(kk−^1 )
+
(
an+ 1
an
)(k+^1 )(kk−^2 )
+···+ 1
.
Since limn→∞ana+n^1 = 1 ,we obtain
nlim→∞
a
k+k 1
n
n
=
k+ 1
k
.
Hence
lim
n→∞
ank+^1
nk
=
(
1 +
1
k
)k
.
(67th W.L. Putnam Mathematical Competition, proposed by T. Andreescu; the special
casek=2 was the object of the second part of a problem given at the regional round of
the Romanian Mathematical Olympiad in 2004)
348.Assume no suchξexists. Thenf(a)>aandf(b)<b. Construct recursively the
sequences(an)n≥ 1 and(bn)n≥ 1 witha 1 =a,b 1 =b, and