Advanced book on Mathematics Olympiad

(ff) #1
Real Analysis 485

Let us write

lim
n→∞

ank+^1
nk

=


⎝lim
n→∞

a

k+k 1
n
n



k
.

Using the Cesàro–Stolz theorem, we have

lim
n→∞

a

k+k 1
n
n

=lim
n→∞

a

k+k 1
n+ 1 −a

k+k 1
n
n+ 1 −n

=lim
n→∞

k


akn++^11 −k


akn+^1

=nlim→∞

akn++^11 −akn+^1
(
k


akn++^11

)k− 1
+

(

k


akn++^11

)k− 2
√kak+ 1
n +···+

(

√kak+ 1
n

)k− 1

=lim
n→∞

(an+ 1 −an)(ank+ 1 +akn+−^11 an+···+ank)
(
k


akn++^11

)k− 1
+

(

k


akn++^11

)k− 2
√kak+ 1
n +···+

(

√kak+ 1
n

)k− 1

=nlim→∞

akn+ 1 +akn−+^11 an+···+ank
√kan

((

k


ank++ 11

)k− 1
+

(

k


ank++ 11

)k− 2
√kak+ 1
n +···+

(

√kak+ 1
n

)k− 1

).

Dividing both sides byank, we obtain


lim
n→∞

a

k+k 1
n
n

= lim
n→∞

(

an+ 1
an

)k
+

(

an+ 1
an

)k− 1
+···+ 1
(
an+ 1
an

)(k+^1 )(kk−^1 )
+

(

an+ 1
an

)(k+^1 )(kk−^2 )
+···+ 1

.

Since limn→∞ana+n^1 = 1 ,we obtain


nlim→∞

a

k+k 1
n
n

=

k+ 1
k

.

Hence


lim
n→∞

ank+^1
nk

=

(

1 +

1

k

)k
.

(67th W.L. Putnam Mathematical Competition, proposed by T. Andreescu; the special
casek=2 was the object of the second part of a problem given at the regional round of
the Romanian Mathematical Olympiad in 2004)


348.Assume no suchξexists. Thenf(a)>aandf(b)<b. Construct recursively the
sequences(an)n≥ 1 and(bn)n≥ 1 witha 1 =a,b 1 =b, and

Free download pdf