496 Real Analysis
Therefore,
∑
p≤n
1
p
+
∑
p≤n
1
p^2
>ln lnn.
But
∑
p≤n
1
p^2
<
∑∞
n= 2
1
k^2
=
π^2
6
− 1 < 1.
Hence
∑
p≤n
1
p
≥ln lnn− 1 ,
as desired.
(proof from I. Niven, H.S. Zuckerman, H.L. Montgomery,An Introduction to the
Theory of Numbers, Wiley, 1991)
365.We have
(k^2 + 1 )k!=(k^2 +k−k+ 1 )k!=k(k+ 1 )k!−(k− 1 )k!
=k(k+ 1 )!−(k− 1 )k!=ak+ 1 −ak,
whereak=(k− 1 )k!. The sum collapses toan+ 1 −a 1 =n(n+ 1 )!.
366.Ifζis anmth root of unity, then all terms of the series starting with themth are zero.
We are left to prove that
ζ−^1 =
m∑− 1
n= 0
ζn( 1 −ζ)( 1 −ζ^2 )···( 1 −ζn).
Multiplying both sides byζyields the equivalent identity
1 =
m∑− 1
n= 0
ζn+^1 ( 1 −ζ)( 1 −ζ^2 )···( 1 −ζn).
The sum telescopes as follows:
m∑− 1
n= 0
ζn+^1 ( 1 −ζ)( 1 −ζ^2 )···( 1 −ζn)
=
m∑− 1
n= 0
( 1 −( 1 −ζn+^1 ))( 1 −ζ)( 1 −ζ^2 )···( 1 −ζn)