500 Real Analysis
374.First solution: LetSn=
∑n
k= 0 (−^1 )
k(n−k)!(n+k)!.Reordering the terms of thesum, we have
Sn=(− 1 )n∑nk= 0(− 1 )kk!( 2 n−k)!=(− 1 )n1
2
(
(− 1 )nn!n!+∑^2 nk= 0(− 1 )kk!( 2 n−k)!)
=
(n!)^2
2+(− 1 )n
Tn
2,
whereTn=
∑ 2 n
k= 0 (−^1 )
kk!( 2 n−k)!. We now focus on the sumTn. Observe thatTn
( 2 n)!=
∑^2 nk= 0(− 1 )k
( 2 n
k)
and
1
( 2 n
k)=
2 n+ 1
2 (n+ 1 )[
1
( 2 n+ 1
k)+
1
( 2 n+ 1
k+ 1)
]
.
Hence
Tn
( 2 n)!=
2 n+ 1
2 (n+ 1 )[
1
( 2 n+ 1
0)+
1
( 2 n+ 1
1)−
1
( 2 n+ 1
1)−
1
( 2 n+ 1
2)+···+
1
( 2 n+ 1
2 n)+
1
( 2 n+ 1
2 n+ 1)
]
.
This sum telescopes to
2 n+ 1
2 (n+ 1 )[
1
( 2 n+ 1
0)+
1
( 2 n+ 1
2 n+ 1)
]
=
2 n+ 1
n+ 1.
ThusTn=(^2 nn++ 11 )!, and therefore
Sn=(n!)^2
2+(− 1 )n( 2 n+ 1 )!
2 (n+ 1 ).
Second solution: Multiply thekth term inSnby(n−k+ 1 )+(n+k+ 1 )and divide by
2 (n+ 1 )to obtain
Sn=1
2 (n+ 1 )∑nk= 0[
(− 1 )k(n−k+ 1 )!(n+k)!+(− 1 )k(n−k)!(n+k+ 1 )!