Advanced book on Mathematics Olympiad

(ff) #1

502 Real Analysis


377.ForN≥2, define


aN=

(

1 −

4

1

)(

1 −

4

9

)(

1 −

4

25

)

···

(

1 −

4

( 2 N− 1 )^2

)

.

The problem asks us to find limN→∞aN. The defining product foraNtelescopes as
follows:


aN=

[(

1 −

2

1

)(

1 +

2

1

)][(

1 −

2

3

)(

1 +

2

3

)]

···

[(

1 −

2

2 N− 1

)(

1 +

2

2 N− 1

)]

=(− 1 · 3 )

(

1

3

·

5

3

)(

3

5

·

7

5

)

···

(

2 N− 3

2 N− 1

·

2 N+ 1

2 N− 1

)

=−

2 N+ 1

2 N− 1

.

Hence the infinite product is equal to


lim
N→∞
aN=−lim
N→∞

2 N+ 1

2 N− 1

=− 1.

378.Define the sequence(aN)Nby


aN=

∏N

n= 1

(

1 +x^2
n)
.

Note that( 1 −x)aNtelescopes as


( 1 −x)( 1 +x)( 1 +x^2 )( 1 +x^4 )···( 1 +x^2

N
)
=( 1 −x^2 )( 1 +x^2 )( 1 +x^4 )···( 1 +x^2
N
)
=( 1 −x^4 )( 1 +x^4 )···( 1 +x^2
N
)
= ··· =( 1 −x^2

N+ 1
).

Hence( 1 −x)aN→1asN→∞, and therefore



n≥ 0

(

1 +x^2

n)
=

1

1 −x

.

379.LetPN =


∏N

n= 1 (^1 −

xn
xn+ 1 ),N≥1. We want to examine the behavior ofPNas
N→∞. Using the recurrence relation we find that this product telescopes as


PN=

∏N

n= 1

(

xn+ 1 −xn
xn+ 1

)

=

∏N

n= 1

nxn
xn+ 1

=

N!

xN+ 1

.
Free download pdf