Advanced book on Mathematics Olympiad

(ff) #1
Real Analysis 533

With the substitutionx−^1 x=twe have( 1 +x^12 )dx=dt, and the integral takes the form



1
t^2 + 1

dt=arctant+C.

We deduce that the integral from the statement is equal to


arctan

(

x−

1

x

)

+C.

448.Substituteu=



ex− 1
ex+ 1 ,0<u<1. Thenx =ln(^1 +u

(^2) )−ln( 1 −u (^2) ), and
dx=( 1 +^2 uu 2 + 1 −^2 uu 2 )du. The integral becomes

u


(

2 u
u^2 + 1

+

2 u
u^2 − 1

)

du=

∫ (

4 −

2

u^2 + 1

+

2

u^2 − 1

)

du

= 4 u−2 arctanu+

∫ (

1

u+ 1

+

1

1 −u

)

du

= 4 u−2 arctanu+ln(u+ 1 )−ln(u− 1 )+C.

In terms ofx, this is equal to


4


ex− 1
ex+ 1
−2 arctan


ex− 1
ex+ 1
+ln

(√

ex− 1
ex+ 1

+ 1

)

−ln

(√

ex− 1
ex+ 1

− 1

)

+C.

449.If we naively try the substitutiont=x^3 +1, we obtain


f(t)=


t+ 1 − 2


t+


t+ 9 − 6


t.

Now we recognize the perfect squares, and we realize that


f(x)=


(


x^3 + 1 − 1 )^2 +


(


x^3 + 1 − 3 )^2 =|


x^3 + 1 − 1 |+|


x^3 + 1 − 3 |.

Whenx∈[ 0 , 2 ],1≤



x^3 + 1 ≤3. Therefore,

f(x)=


x^3 + 1 − 1 + 3 −


x^3 + 1 = 2.

The antiderivatives offare therefore the linear functionsf(x)= 2 x+C, whereCis a
constant.
(communicated by E. Craina)


450.Letfn= 1 +x+x


2
2 !+···+

xn
n!. Thenf
′(x)= 1 +x+···+xn−^1
(n− 1 )!. The integral
in the statement becomes

Free download pdf