Real Analysis 535=arctanx+1
3
arctanx^3.To write the answer in the required form we should have3 arctanx+arctanx^3 =arctan
P(x)
Q(x).
Applying the tangent function to both sides, we deduce
3 x−x^3
1 − 3 x^2 +x31 −^31 −x− 3 xx 23 ·x^3=tan(
arctanP(x)
Q(x))
.
From herearctanP(x)
Q(x)=arctan3 x− 3 x^5
1 − 3 x^2 − 3 x^4 +x^6,
and henceP(x)= 3 x− 3 x^5 ,Q(x)= 1 − 3 x^2 − 3 x^4 +x^6. The final answer is1
3arctan
3 x− 3 x^5
1 − 3 x^2 − 3 x^4 +x^6+C.
453.The functionf:[− 1 , 1 ]→R,f(x)=√ (^3) x
√ (^31) −x+√ (^31) +x,
is odd; therefore, the integral is zero.
454.We use the example from the introduction for the particular functionf(x)= 1 +xx 2
to transform the integral into
π
∫ π 2
0
sinx
1 +sin^2 x
dx.
This is the same as
π
∫ π 2
0
−
d(cosx)
2 −cos^2 x,
which with the substitutiont=cosxbecomesπ∫ 1
01
2 −t^2dt=π
2√
2
ln√
2 +t
√
2 −t∣
∣∣
∣∣
10=
π
2√
2
ln