Real Analysis 537
This we already computed in the previous problem. (“Happiness is longing for repeti-
tion,’’ says M. Kundera.) So the answer to the problem isπ 8 ln 2.
(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)
460.The function lnxis integrable near zero, and the function under the integral sign is
dominated byx−^3 /^2 near infinity; hence the improper integral converges. We first treat
the casea=1. The substitutionx= 1 /tyields
∫∞
0
lnx
x^2 + 1
dx=
∫ 0
∞
ln^1 t
1
t^2 +^1
(
−
1
t^2
)
dt=−
∫∞
0
lnt
t^2 + 1
dt,
which is the same integral but with opposite sign. This shows that fora=1 the integral
is equal to 0. For generalawe compute the integral using the substitutionx=a/tas
follows
∫∞
0
lnx
x^2 +a^2
dx=
∫ 0
∞
lna−lnt
(a
t
) 2
+a^2
·
(
−
a
t^2
)
dt=
1
a
∫∞
0
lna−lnt
1 +t^2
dt
=
lna
a
∫∞
0
dt
t^2 + 1
−
1
a
∫∞
0
lnt
t^2 + 1
dt=
πlna
2 a
.
(P.N. de Souza, J.N. Silva,Berkeley Problems in Mathematics, Springer, 2004)
461.The statement is misleading. There is nothing special about the limits of integration!
Theindefiniteintegral can be computed as follows:
∫
xcosx−sinx
x^2 +sin^2 x
dx=
∫ cosx
x −
sinx
x^2
1 +
(sinx
x
) 2 dx=
∫
1
1 +
(sinx
x
) 2
(
sinx
x
)′
dx
=arctan
(
sinx
x
)
+C.
Therefore,
∫ π 2
0
xcosx−sinx
x^2 +sin^2 x
dx=arctan
2
π
−
π
4
.
(Z. Ahmed)
462.Ifαis a multiple ofπ, thenI(α)= 0. Otherwise, use the substitutionx =
cosα+tsinα. The indefinite integral becomes
∫
sinαdx
1 − 2 xcosα+x^2
=
∫
dt
1 +t^2
=arctant+C.
It follows that the definite integralI(α)has the value