Real Analysis 539=−e−xP(x)|t 0 −e−xP′(x)|t 0 −···−e−xP(n)(x)|t 0.Because limt→∞e−tP(k)(t)=0,k= 0 , 1 ,...,n, when passing to the limit we obtain
tlim→∞∫t0e−xP(x)dx=P( 0 )+P′( 0 )+P′′( 0 )+···,hence the conclusion.
465.First, note that by L’Hôpital’s theorem,
lim
x→ 01 −cosnx
1 −cosx=n^2 ,which shows that the absolute value of the integrand is bounded asxapproaches 0, and
hence the integral converges.
Denote the integral byIn. Then
In+ 1 +In− 1
2=
∫π02 −cos(n+ 1 )x−cos(n− 1 )x
2 ( 1 −cosx)
dx=∫π01 −cosnxcosx
1 −cosx
dx=
∫π0( 1 −cosnx)+cosnx( 1 −cosx)
1 −cosx
dx=In+∫π0cosnxdx=In.Therefore,
In=1
2
(In+ 1 +In− 1 ), n≥ 1.This shows thatI 0 ,I 1 ,I 2 ,...is an arithmetic sequence. FromI 0 =0 andI 1 =πit
follows thatIn=nπ,n≥1.
466.Integration by parts gives
In=∫π/ 20sinnxdx=∫π/ 20sinn−^1 xsinxdx=−sinn−^1 xcos^2 x∣∣
∣π/ 02 +(n−^1 )∫π/ 20sinn−^2 xcos^2 xdx=(n− 1 )∫π/ 20sinn−^2 x( 1 −sin^2 x)dx=(n− 1 )In− 2 −(n− 1 )In.We obtain the recursive formula
In=n− 1
nIn− 2 ,n≥ 2.This combined withI 0 =π 2 andI 1 =1 yields