540 Real AnalysisIn=⎧
⎪⎪⎨
⎪⎪⎩
1 · 3 · 5 ···( 2 k− 1 )
2 · 4 · 6 ···( 2 k)·
π
2, ifn= 2 k,2 · 4 · 6 ···( 2 k)
1 · 3 · 5 ···( 2 k+ 1 ), ifn= 2 k+ 1.To prove the Wallis formula, we use the obvious inequality sin^2 n+^1 x<sin^2 nx<
sin^2 n−^1 x,x∈( 0 ,π 2 )to deduce thatI 2 n+ 1 <I 2 n<I 2 n− 1 ,n≥1. This translates into2 · 4 · 6 ···( 2 n)
1 · 3 · 5 ···( 2 n+ 1 )<
1 · 3 · 5 ···( 2 n− 1 )
2 · 4 · 6 ···( 2 n)·
π
2<
2 · 4 · 6 ···( 2 n− 2 )
1 · 3 · 5 ···( 2 n− 1 ),
which is equivalent to
[
2 · 4 · 6 ···( 2 n)
1 · 3 · 5 ···( 2 n− 1 )] 2
·
2
2 n+ 1<π <[
2 · 4 · 6 ···( 2 n)
1 · 3 · 5 ···( 2 n− 1 )] 2
·
2
2 n.
We obtain the double inequalityπ<[
2 · 4 · 6 ···( 2 n)
1 · 3 · 5 ···( 2 n− 1 )] 2
·
1
n<π·
2 n+ 1
2 n.
Passing to the limit and using the squeezing principle, we obtain the Wallis formula.
467.Denote the integral from the statement byIn,n≥0. We haveIn=∫ 0
−πsinnx
( 1 + 2 x)sinx
dx+∫π0sinnx
( 1 + 2 x)sinx
dx.In the first integral changexto−xto further obtainIn=∫π0sinnx
( 1 + 2 −x)sinxdx+∫π0sinnx
( 1 + 2 x)sinxdx=
∫π02 xsinnx
( 1 + 2 x)sinxdx+∫π0sinnx
( 1 + 2 x)sinxdx=
∫π0( 1 + 2 x)sinnx
( 1 + 2 x)sinxdx=∫π0sinnx
sinxdx.And these integrals can be computed recursively. Indeed, forn≥0 we have
In+ 2 −In=∫π0sin(n+ 2 )x−sinnx
sinx
dx= 2∫π0cos(n− 1 )xdx= 0 ,a very simple recurrence. Hence forneven,In=I 0 =0, and fornodd,In=I 1 =π.
(3rd International Mathematics Competition for University Students, 1996)