Real Analysis 547
481.Suppose thatx>y. Transform the inequality successively into
mn(x−y)(xm+n−^1 −ym+n−^1 )≥(m+n− 1 )(xm−ym)(xn−yn),
and then
xm+n−^1 −ym+n−^1
(m+n− 1 )(x−y)
≥
xm−ym
m(x−y)
·
xn−yn
n(x−y)
.
The last one can be written as
(x−y)
∫x
y
tm+n−^2 dt≥
∫x
y
tm−^1 dt·
∫x
y
tn−^1 dt.
Here we recognize Chebyshev’s inequality applied to the integrals of the functionsf, g:
[y, x]→R,f(t)=tm−^1 andg(t)=tn−^1.
(Austrian–Polish Competition, 1995)
482.Observe thatfbeing monotonic, it is automatically Riemann integrable. Taking
the mean offon the intervals[ 0 ,α]and[ 1 −α, 1 ]and using the monotonicity of the
function, we obtain
1
1 −α
∫ 1
α
f(x)dx≤
1
α
∫α
0
f(x)dx,
whence
α
∫ 1
α
f(x)dx≤( 1 −α)
∫α
0
f(x)dx.
Adding
∫α
0 f(x)dxto both sides gives
α
∫ 1
0
f(x)dx≤
∫α
0
f(x)dx,
as desired.
(Soviet Union University Student Mathematical Olympiad, 1976)
483.Forx∈[ 0 , 1 ], we havef′(x)≤f′( 1 ), and so
f′( 1 )
f^2 (x)+ 1
≤
f′(x)
f^2 (x)+ 1
.
Integrating, we obtain
f′( 1 )
∫ 1
0
dx
f^2 (x)+ 1
≤
∫ 1
0
f′(x)
f^2 (x)+ 1
=arctanf( 1 )−arctanf( 0 )=arctanf( 1 ).