Advanced book on Mathematics Olympiad

(ff) #1
Real Analysis 547

481.Suppose thatx>y. Transform the inequality successively into

mn(x−y)(xm+n−^1 −ym+n−^1 )≥(m+n− 1 )(xm−ym)(xn−yn),

and then
xm+n−^1 −ym+n−^1
(m+n− 1 )(x−y)


xm−ym
m(x−y)

·

xn−yn
n(x−y)

.

The last one can be written as

(x−y)

∫x

y

tm+n−^2 dt≥

∫x

y

tm−^1 dt·

∫x

y

tn−^1 dt.

Here we recognize Chebyshev’s inequality applied to the integrals of the functionsf, g:
[y, x]→R,f(t)=tm−^1 andg(t)=tn−^1.
(Austrian–Polish Competition, 1995)
482.Observe thatfbeing monotonic, it is automatically Riemann integrable. Taking
the mean offon the intervals[ 0 ,α]and[ 1 −α, 1 ]and using the monotonicity of the
function, we obtain

1
1 −α

∫ 1

α

f(x)dx≤

1

α

∫α

0

f(x)dx,

whence

α

∫ 1

α

f(x)dx≤( 1 −α)

∫α

0

f(x)dx.

Adding


∫α
0 f(x)dxto both sides gives

α

∫ 1

0

f(x)dx≤

∫α

0

f(x)dx,

as desired.
(Soviet Union University Student Mathematical Olympiad, 1976)
483.Forx∈[ 0 , 1 ], we havef′(x)≤f′( 1 ), and so
f′( 1 )
f^2 (x)+ 1


f′(x)
f^2 (x)+ 1

.

Integrating, we obtain

f′( 1 )

∫ 1

0

dx
f^2 (x)+ 1


∫ 1

0

f′(x)
f^2 (x)+ 1
=arctanf( 1 )−arctanf( 0 )=arctanf( 1 ).
Free download pdf