Real Analysis 551P(x)=1
4
+
1
16
x+1
64
x^2.By the residue formula for Taylor series we have
∣
∣∣
∣P(x)+1
x− 4∣
∣∣
∣=
x^3
256+
1
(ξ− 4 )^4x^5 ,for someξ∈( 0 ,x). Since|x|≤1 and also|ξ|≤1, we have x
3
256 ≤1
256 andx(^4) /(ξ− 4 ) (^5) ≤
1
243. An easy numerical computation shows that
1
256 +
1
243 <
1
100 , and we are done.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1979,
proposed by O. Stan ̆ ̆a ̧sil ̆a)
490.The Taylor series expansion of cos
√
xaround 0 iscos√
x= 1 −x
2!+
x^2
4!−
x^3
6!+
x^4
8!−···.
Integrating term by term, we obtain
∫ 10cos√
xdx=∑∞
n= 1(− 1 )n−^1 xn
(n+ 1 )( 2 n)!∣∣
∣∣
∣
10=
∑∞
n= 0(− 1 )n−^1
(n+ 1 )( 2 n)!.
Grouping consecutive terms we see that
(
1
5 · 8!−
1
6 · 10!
)
+
(
1
7 · 12!
−
1
8 · 14!
)
+···<
1
2 · 104
+
1
2 · 105
+
1
2 · 106
+···
<
1
104
.
Also, truncating to the fourth decimal place yields
0. 7638 < 1 −
1
4
+
1
72
−
1
2880
< 0. 7639.
We conclude that
∫ 10cos√
xdx≈ 0. 763.491.Consider the Newton binomial expansion(x+ 1 )−(^12)
∑∞
k= 0(
−^12
k)
xk=∑∞
k= 0(
−^12
)(
−^12 − 1
)(
−^12 − 2
)
···
(
−^12 −k+ 1)
k!xk