Real Analysis 551
P(x)=
1
4
+
1
16
x+
1
64
x^2.
By the residue formula for Taylor series we have
∣
∣∣
∣P(x)+
1
x− 4
∣
∣∣
∣=
x^3
256
+
1
(ξ− 4 )^4
x^5 ,
for someξ∈( 0 ,x). Since|x|≤1 and also|ξ|≤1, we have x
3
256 ≤
1
256 andx
(^4) /(ξ− 4 ) (^5) ≤
1
243. An easy numerical computation shows that
1
256 +
1
243 <
1
100 , and we are done.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1979,
proposed by O. Stan ̆ ̆a ̧sil ̆a)
490.The Taylor series expansion of cos
√
xaround 0 is
cos
√
x= 1 −
x
2!
+
x^2
4!
−
x^3
6!
+
x^4
8!
−···.
Integrating term by term, we obtain
∫ 1
0
cos
√
xdx=
∑∞
n= 1
(− 1 )n−^1 xn
(n+ 1 )( 2 n)!
∣∣
∣∣
∣
1
0
=
∑∞
n= 0
(− 1 )n−^1
(n+ 1 )( 2 n)!
.
Grouping consecutive terms we see that
(
1
5 · 8!
−
1
6 · 10!
)
+
(
1
7 · 12!
−
1
8 · 14!
)
+···<
1
2 · 104
+
1
2 · 105
+
1
2 · 106
+···
<
1
104
.
Also, truncating to the fourth decimal place yields
0. 7638 < 1 −
1
4
+
1
72
−
1
2880
< 0. 7639.
We conclude that
∫ 1
0
cos
√
xdx≈ 0. 763.
491.Consider the Newton binomial expansion
(x+ 1 )−
(^12)
∑∞
k= 0
(
−^12
k
)
xk=
∑∞
k= 0
(
−^12
)(
−^12 − 1
)(
−^12 − 2
)
···
(
−^12 −k+ 1
)
k!
xk