Real Analysis 573Consequently, the integral we are computing is equal toπ
2
32.
(American Mathematical Monthly, proposed by M. Hajja and P. Walker)
520.We have
I=∫∫
Dln|sin(x−y)|dxdy=∫π0(∫y0ln|sin(y−x)|dx)
dy=
∫π0(∫y0ln sintdt)
dy=y∫y0ln sintdt∣∣
∣∣
y=πy= 0−
∫π0yln sinydy=πA−B,whereA=
∫π
0 ln sintdt,B =∫π
0 tln sintdt. Note that here we used integration by
parts! We compute further
A=
∫ π 20ln sintdt+∫π
π 2 ln sintdt=∫ π 20ln sintdt+∫ π 20ln costdt=
∫ π 20(ln sin 2t−ln 2)dt=−π
2ln 2+1
2
A.
HenceA=−πln 2. ForBwe use the substitutiont=π−xto obtain
B=∫π0(π−x)ln sinxdx=πA−B.HenceB=π 2 A. Therefore,I=πA−B=−π
2
2 ln 2, and we are done.
Remark.The identity
∫ π 20ln sintdt=−
π
2ln 2belongs to Euler.
(S. Radulescu, M. R ̆ adulescu, ̆ Teoreme ̧si Probleme de Analiza Matematic ̆ ̆a(Theorems
and Problems in Mathematical Analysis), Editura Didactica ̧ ̆si Pedagogic ̆a, Bucharest,
1982).
521.This problem applies the discrete version of Fubini’s theorem. Define
f(i,j)={
1 forj≤ai,
0 forj>ai.The left-hand side is equal to
∑n
i= 1∑m
∑m j=^1 f(i,j), while the right-hand side is equal to
j= 1
∑n
i= 1 f(i,j). The equality follows.