Real Analysis 581
∮CPdx+Qdy+Rdz=∫∫
S(
∂Q
∂x−
∂P
∂y)
dxdy+(
∂R
∂y−
∂Q
∂z)
dydz+
(
∂P
∂z−
∂R
∂x)
dzdx.Writing the parametrization with coordinate functions−→v 1 (s) = (x(s), y(s), z(s)),
−→v
2 (t)=(x′(t), y′(t), z′(t)), the linking number ofC 1 andC 2 (with the factor 41 πignored)
becomes
∮
C 1∮
C 2(x′−x)(dz′dy−dy′dz)+(y′−y)(dx′dz−dz′dx)+(z′−z)(dy′dx−dx′dy)
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2The 1-formPdx+Qdy+Rdz, which we integrate onC=C 1 ∪C′ 1 ,is
∮
C 2(x′−x)(dz′dy−dy′dz)+(y′−y)(dx′dz−dz′dx)+(z′−z)(dy′dx−dx′dy)
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2.
Note that here we integrate against the variablesx′,y′,z′, so this expression depends
only onx, y, andz. Explicitly,
P(x, y, z)=∮
C 2−(y′−y)dz′+(z′−z)dy′
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2,
Q(x,y,z)=∮
C 2(x′−x)dz′−(z′−z)dx′
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2,
R(x, y, z)=∮
C 2−(x′−x)dy′+(y′−y)dx′
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2.
By the general form of Green’s theorem, lk(C 1 ,C 2 )=lk(C 1 ′,C 2 )if
∂Q
∂x−
∂P
∂y=
∂R
∂y−
∂Q
∂z=
∂P
∂z−
∂R
∂x= 0.
We will verify only∂Q∂x−∂P∂y=0, the other equalities having similar proofs. The part of
it that containsdz′is equal to
∮
C 2− 2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^3 /^2+ 3 (x′−x)^2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^5 /^2
+ 3 (y′−y)^2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^5 /^2 dz′=∮
C 2((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^3 /^2+ 3 (z′−z)^2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^5 /^2 dz′