Advanced book on Mathematics Olympiad

(ff) #1

656 Geometry and Trigonometry


Herex=sina,y=cosa,z=−^15. It follows that eitherx+y+z=0orx=y=z. The
latter would imply sina=cosa=−^15 , which violates the identity sin^2 a+cos^2 a=1.
Hencex+y+z=0, implying sina+cosa=^15. Then 5(sina+cosa)=1, and so


sin^2 a+2 sinacosa+cos^2 a=

1

25

.

It follows that 1+2 sinacosa= 0 .04; hence


5 (sina+cosa)+2 sinacosa= 0. 04 ,

as desired.
Conversely,


5 (sina+cosa)+2 sinacosa= 0. 04

implies


125 (sina+cosa)= 1 −50 sinacosa.

Squaring both sides and setting 2 sinacosa=byields


1252 + 1252 b= 1 − 50 b+ 252 b^2 ,

which simplifies to


( 25 b+ 24 )( 25 b− 651 )= 0.

We obtain 2 sinacosa=−^2425 , or 2 sinacosa=^65125. The latter is impossible because
sin 2a≤1. Hence 2 sinacosa=− 0 .96, and we obtain sina+cosa= 0 .2. Then


5 (sin^3 a+cos^3 a)+3 sinacosa= 5 (sina+cosa)(sin^2 a−sinacosa+cos^2 a)
+3 sinacosa
=sin^2 a−sinacosa+cos^2 a+3 sinacosa
=(sina+cosa)^2 =( 0. 2 )^2 = 0. 04 ,

as desired.
(Mathematical Reflections, proposed by T. Andreescu)


665.If we setbk=tan(ak−π 4 ),k= 0 , 1 ,...,n, then


tan

(

ak−
π
4

+

π
4

)

=

1 +tan(ak−π 4 )
1 −tan(ak−π 4 )

=

1 +bk
1 −bk

.
Free download pdf