Advanced book on Mathematics Olympiad

(ff) #1

666 Geometry and Trigonometry


xn=tan

(

90 ◦−

30 ◦

2 n−^1

)

=cot

(

30 ◦

2 n−^1

)

=cotθn, whereθn=

30 ◦

2 n−^1

.

A similar calculation shows that

yn=tan 2θn=

2 tanθn
1 −tan^2 θn

,

which implies that


xnyn=

2

1 −tan^2 θn

.

Because 0◦<θn< 45 ◦, we have 0<tan^2 θn<1 andxnyn>2. Forn>1, we have
θn< 30 ◦, and hence tan^2 θn<^13. It follows thatxnyn<3, and the problem is solved.
(Team Selection Test for the International Mathematical Olympiad, Belarus, 1999)


685.Leta=tanx,b=tany,c=tanz, wherex, y, z∈( 0 ,π 2 ). From the identity


tan(x+y+z)=

tanx+tany+tanz−tanxtanytanz
1 −tanxtany−tanytanz−tanxtanz

it follows thatabc=a+b+conly ifx+y+z=kπ, for some integerk. In this case
tan( 3 x+ 3 y+ 3 z)=tan 3kπ=0, and from the same identity it follows that


tan 3xtan 3ytan 3z=tan 3x+tan 3y+tan 3z.

This is the same as


3 a−a^3
3 a^2 − 1

·

3 b−b^3
3 b^2 − 1

·

3 c−c^3
3 c^2 − 1

=

3 a−a^3
3 a^2 − 1

+

3 b−b^3
3 b^2 − 1

+

3 c−c^3
3 c^2 − 1

,

and we are done.
(Mathematical Olympiad Summer Program, 2000, proposed by T. Andreescu)


686.With the substitutionx=cosht, the integral becomes

1
sinht+cosht


sinhtdt

=


et−e−t
2 et
dt=

1

2


( 1 −e−^2 t)dt=

1

2

t+

e−^2 t
4

+C

=

1

2

ln(x+


x^2 − 1 )+

1

4

·

1

2 x^2 − 1 + 2 x


x^2 − 1

+C.

687.Suppose by contradiction that there exists an irrationalaand a positive integern
such that the expression from the statement is rational. Substitutea=cosht, wheretis
an appropriately chosen real number. Then

Free download pdf