Advanced book on Mathematics Olympiad

(ff) #1
Number Theory 693

744.There are clearly more 2’s than 5’s in the prime factorization ofn!, so it suffices to
solve the equation
⌊n
5



+

⌊n
52


+

⌊n
53


+··· = 1000.

On the one hand,


⌊n
5


+

⌊n
52


+

⌊n
53


+···<

n
5

+

n
52

+

n
53

+··· =

n
5

·

1

1 −^15

=

n
4

,

and hencen>4000. On the other hand, using the inequalitya>a−1, we have


1000 >

(n
5

− 1

)

+

(n
52

− 1

)

+

(n
53

− 1

)

+

(n
54

− 1

)

+

(n
55

− 1

)

=

n
5

(

1 +

1

5

+

1

52

+

1

53

+

1

54

)

− 5 =

n
5

·

1 −

( 1

5

) 5

1 −^15

− 5 ,

so


n<

1005 · 4 · 3125

3124

< 4022.

We have narrowed down our search to{ 4001 , 4002 ,..., 4021 }. Checking each case
with Polignac’s formula, we find that the only solutions aren=4005, 4006, 4007, 4008,
and 4009.


745.Polignac’s formula implies that the exponent of the number 2 inn!is
⌊n
2



+

⌊n
22


+

⌊n
23


+···.

Because


n
2

+

n
22

+

n
23
+··· =n

and not all terms in this infinite sum are integers, it follows thatnis strictly greater than
the exponent of 2 inn!, and the claim is proved.
(Mathematics Competition, Soviet Union, 1971)


746.Letpbe a prime number. The power ofpin lcm( 1 , 2 ,...,ni)is equal tokif and
only if

n
pk+^1



<i≤


n
pk


.

Hence the power ofpin the expression on the right-hand side is

Free download pdf