706 Number Theory
775.We use strong induction. The property is true forn=1. Letn=pαq, wherepis
a prime number andqis relatively prime top(qis allowed to be 1). Assume that the
formula holds forq. Any numberkthat dividesnis of the formpjm, where 0≤j≤α,
andmdividesq. Hence we can write
∑α
j= 0
∑
m|q
φ(pjm)=
∑α
j= 0
∑
m|q
φ(pj)φ(m)=
∑α
j= 0
φ(pj)
∑
m|q
φ(m)
=
⎛
⎝ 1 +
∑α
j= 1
pj−^1 (p− 1 )
⎞
⎠q=pαq=n.
This completes the induction.
(C.F. Gauss)
776.Ifn= 2 m,m≥2, then
φ(n)= 2 m− 2 m−^1 = 2 m−^1 ≥
√
2 m=
√
n.
Ifn=pm, wherem≥2 andpis an odd prime, then
φ(n)=pm−^1 (p− 1 )≥
√
pm=
√
n.
Observe, moreover, that ifn=pm,m≥2, wherepis a prime greater than or equal to
5, thenφ(n)≥
√
2 n.
Now in general, ifnis either odd or a multiple of 4, then
φ(n)=φ(pα 11 )···φ(pkαk)≥
√
pα 11 ···
√
pαkk=
√
n.
We are left with the casen= 2 t, withtodd and different from 1 or 3. If any prime
factor oftis greater than or equal to 5, thenφ(n)=φ(t)≥
√
2 t. It remains to settle the
casen= 2 · 3 i,i≥2. Fori=2,φ( 18 )= 6 >
√
- Fori≥3,φ(n)= 2 · 3 i−^1 , and
the inequality reduces to
√
2 · 3
i 2 − 1
>1, which is obvious.
777.An example isn=15. In that caseφ( 15 )=φ( 3 · 5 )= 2 · 4 =8, and 8^2 + 152 = 172.
Observe that forα, β≥1,
φ( 3 α· 5 β)= 3 α−^1 · 5 β−^1 ( 3 − 1 )( 5 − 1 )= 3 α−^1 · 5 β−^1 · 8
and
( 3 α−^1 · 5 β−^1 · 8 )^2 +( 3 α· 5 β)^2 =( 3 α−^1 · 5 β−^1 · 17 )^2 ,
so any number of the formn= 3 α· 5 βhas the desired property.
778.We will prove that ifm= 2 · 7 r,r≥1, then the equationφ(n)=mhas no solutions.