Advanced book on Mathematics Olympiad

(ff) #1
Combinatorics and Probability 749

Integrating by parts, we obtain

Ik=

∫ π 2

0

(2 sinθ)^2 k−^1 (2 sinθ)dθ

=(2 sinθ)^2 k(−2 cosθ)|

π 2
0 +

∫ π 2

0

( 2 k− 1 )(2 sinθ)^2 k−^2 4 cos^2 θdθ

=( 2 k− 1 )

∫ π 2

0

(2 sinθ)^2 k−^2 ( 4 −4 sin^2 θ)dθ

= 4 ( 2 k− 1 )Ik− 1 −( 2 k− 1 )Ik.

HenceIk=^4 kk−^2 Ik− 1 ,k≥1. Comparing this with
(
2 k
k

)

=

( 2 k)( 2 k− 1 )( 2 k− 2 )!
k^2 ((k− 1 )!)^2

=

4 k− 2
k

(

2 k− 2
k

)

,

we see that it remains to check the equality^2 πI 0 =1, and that is obvious.
860.We compute

A^2 =



⎜⎜

⎜⎜


123 ··· n
012 ···n− 1
001 ···n− 2
..
.

..

.

..

.

... ..

.

000 ··· 1



⎟⎟

⎟⎟


=



⎜⎜

⎜⎜


( 1

1

)( 2

1

)( 3

1

)

···

(n
1

)

0

( 1

1

)( 2

1

)

···

(n− 1
1

)

00

( 1

1

)

···

(n− 2
1

)

..

.

..

.

..

.

... ..

.

000 ···

( 1

1

)



⎟⎟

⎟⎟


.

Also,


A^3 =



⎜⎜

⎜⎜


( 2

2

)( 3

2

)( 4

2

)

···

(n+ 1
2

)

0

( 2

2

)( 3

2

)

···

(n
2

)

00

( 2

2

)

···

(n− 1
2

)

..

.

..

.

..

.

... ..

.

000 ···

( 2

2

)



⎟⎟

⎟⎟


.

In general,

Ak=



⎜⎜

⎜⎜



(k− 1
k− 1

)(k
k− 1

)(k+ 1
k− 1

)

···

(k+n− 2
k− 1

)

0

(k− 1
k− 1

)(k
k− 1

)

···

(k+n− 3
k− 1

)

00

(k− 1
k− 1

)

···

(k+n− 4
k− 1

)

..

.

..

.

..

.

... ..

.

000 ···

(k− 1
k− 1

)



⎟⎟

⎟⎟



.
Free download pdf