Combinatorics and Probability 749
Integrating by parts, we obtain
Ik=
∫ π 2
0
(2 sinθ)^2 k−^1 (2 sinθ)dθ
=(2 sinθ)^2 k(−2 cosθ)|
π 2
0 +
∫ π 2
0
( 2 k− 1 )(2 sinθ)^2 k−^2 4 cos^2 θdθ
=( 2 k− 1 )
∫ π 2
0
(2 sinθ)^2 k−^2 ( 4 −4 sin^2 θ)dθ
= 4 ( 2 k− 1 )Ik− 1 −( 2 k− 1 )Ik.
HenceIk=^4 kk−^2 Ik− 1 ,k≥1. Comparing this with
(
2 k
k
)
=
( 2 k)( 2 k− 1 )( 2 k− 2 )!
k^2 ((k− 1 )!)^2
=
4 k− 2
k
(
2 k− 2
k
)
,
we see that it remains to check the equality^2 πI 0 =1, and that is obvious.
860.We compute
A^2 =
⎛
⎜
⎜⎜
⎜⎜
⎝
123 ··· n
012 ···n− 1
001 ···n− 2
..
.
..
.
..
.
... ..
.
000 ··· 1
⎞
⎟
⎟⎟
⎟⎟
⎠
=
⎛
⎜
⎜⎜
⎜⎜
⎝
( 1
1
)( 2
1
)( 3
1
)
···
(n
1
)
0
( 1
1
)( 2
1
)
···
(n− 1
1
)
00
( 1
1
)
···
(n− 2
1
)
..
.
..
.
..
.
... ..
.
000 ···
( 1
1
)
⎞
⎟
⎟⎟
⎟⎟
⎠
.
Also,
A^3 =
⎛
⎜
⎜⎜
⎜⎜
⎝
( 2
2
)( 3
2
)( 4
2
)
···
(n+ 1
2
)
0
( 2
2
)( 3
2
)
···
(n
2
)
00
( 2
2
)
···
(n− 1
2
)
..
.
..
.
..
.
... ..
.
000 ···
( 2
2
)
⎞
⎟
⎟⎟
⎟⎟
⎠
.
In general,
Ak=
⎛
⎜
⎜⎜
⎜⎜
⎜
⎝
(k− 1
k− 1
)(k
k− 1
)(k+ 1
k− 1
)
···
(k+n− 2
k− 1
)
0
(k− 1
k− 1
)(k
k− 1
)
···
(k+n− 3
k− 1
)
00
(k− 1
k− 1
)
···
(k+n− 4
k− 1
)
..
.
..
.
..
.
... ..
.
000 ···
(k− 1
k− 1