66 2 Algebra
206.Prove that
∣
∣∣
∣∣
∣
(x^2 + 1 )^2 (xy+ 1 )^2 (xz+ 1 )^2
(xy+ 1 )^2 (y^2 + 1 )^2 (yz+ 1 )^2
(xz+ 1 )^2 (yz+ 1 )^2 (z^2 + 1 )^2
∣
∣∣
∣∣
∣
= 2 (y−z)^2 (z−x)^2 (x−y)^2.
207.Let(Fn)nbe the Fibonacci sequence. Using determinants, prove the identity
Fn+ 1 Fn− 1 −Fn^2 =(− 1 )n, for alln≥ 1.
208.Letp<mbe two positive integers. Prove that
∣
∣∣
∣∣
∣∣
∣
∣∣
(m
0
)(m
1
)
···
(m
p
)
(m+ 1
0
)(m+ 1
1
)
···
(m+ 1
p
)
..
.
..
.
... ..
(.
m+p
0
)(m+p
1
)
···
(m+p
p
)
∣
∣∣
∣∣
∣∣
∣
∣∣
= 1.
209.Given distinct integersx 1 ,x 2 ,...,xn, prove that
∏
i>j(xi−xj)is divisible by
1! 2 !···(n− 1 )!.
210.Prove the formula for the determinant of a circulant matrix
∣
∣
∣∣
∣∣
∣∣
∣∣
∣
x 1 x 2 x 3 ···xn
xnx 1 x 2 ···xn− 1
..
.
..
.
..
.
.....
.
x 3 x 4 x 5 ···x 2
x 2 x 3 x 4 ···x 1
∣
∣
∣∣
∣∣
∣∣
∣∣
∣
=(− 1 )n−^1
n∏− 1
j= 0
( n
∑
k= 1
ζjkxk
)
,
whereζ=e^2 πi/n.
- Compute the determinant of then×nmatrixA=(aij)ij, where
aij=
{
(− 1 )|i−j| ifi =j,
2ifi=j.
212.Prove that for any integersx 1 ,x 2 ,...,xnand positive integersk 1 ,k 2 ,...,kn, the
determinant
∣
∣
∣∣
∣∣
∣∣
∣
x 1 k^1 x 2 k^1 ···xnk^1
x 1 k^2 x 2 k^2 ···xnk^2
..
.
..
.
... ..
.
x 1 knx 2 kn···xnkn
∣
∣
∣∣
∣∣
∣∣
∣
is divisible byn!.