Advanced book on Mathematics Olympiad

(ff) #1

66 2 Algebra


206.Prove that

∣∣
∣∣


(x^2 + 1 )^2 (xy+ 1 )^2 (xz+ 1 )^2
(xy+ 1 )^2 (y^2 + 1 )^2 (yz+ 1 )^2
(xz+ 1 )^2 (yz+ 1 )^2 (z^2 + 1 )^2


∣∣

∣∣


= 2 (y−z)^2 (z−x)^2 (x−y)^2.

207.Let(Fn)nbe the Fibonacci sequence. Using determinants, prove the identity


Fn+ 1 Fn− 1 −Fn^2 =(− 1 )n, for alln≥ 1.

208.Letp<mbe two positive integers. Prove that

∣∣
∣∣
∣∣

∣∣


(m
0

)(m
1

)

···

(m
p

)

(m+ 1
0

)(m+ 1
1

)

···

(m+ 1
p

)

..

.

..

.

... ..

(.

m+p
0

)(m+p
1

)

···

(m+p
p

)


∣∣

∣∣

∣∣


∣∣

= 1.

209.Given distinct integersx 1 ,x 2 ,...,xn, prove that



i>j(xi−xj)is divisible by
1! 2 !···(n− 1 )!.

210.Prove the formula for the determinant of a circulant matrix


∣∣
∣∣
∣∣
∣∣


x 1 x 2 x 3 ···xn
xnx 1 x 2 ···xn− 1
..
.

..

.

..

.

.....

.

x 3 x 4 x 5 ···x 2
x 2 x 3 x 4 ···x 1



∣∣

∣∣

∣∣

∣∣


=(− 1 )n−^1

n∏− 1

j= 0

( n

k= 1

ζjkxk

)

,

whereζ=e^2 πi/n.


  1. Compute the determinant of then×nmatrixA=(aij)ij, where


aij=

{

(− 1 )|i−j| ifi =j,
2ifi=j.

212.Prove that for any integersx 1 ,x 2 ,...,xnand positive integersk 1 ,k 2 ,...,kn, the
determinant


∣∣
∣∣
∣∣


x 1 k^1 x 2 k^1 ···xnk^1
x 1 k^2 x 2 k^2 ···xnk^2
..
.

..

.

... ..

.

x 1 knx 2 kn···xnkn



∣∣

∣∣

∣∣


is divisible byn!.
Free download pdf