- 1 Methods of Proof................................................ A Study Guide...................................................... xv
- 1.1 Argument by Contradiction......................................
- 1.2 Mathematical Induction.........................................
- 1.3 The Pigeonhole Principle........................................
- 1.4 Ordered Sets and Extremal Elements..............................
- 1.5 Invariants and Semi-Invariants...................................
- 2 Algebra........................................................
- 2.1 Identities and Inequalities
- 2.1.1 Algebraic Identities.......................................
- 2.1.2 x^2 ≥0..................................................
- 2.1.3 The Cauchy–Schwarz Inequality............................
- 2.1.4 The Triangle Inequality
- 2.1.5 The Arithmetic Mean–Geometric Mean Inequality.............
- 2.1.6 Sturm’s Principle.........................................
- 2.1.7 Other Inequalities........................................
- 2.2 Polynomials...................................................
- 2.2.1 A Warmup
- 2.2.2 Viète’s Relations.........................................
- 2.2.3 The Derivative of a Polynomial.............................
- 2.2.4 The Location of the Zeros of a Polynomial...................
- 2.2.5 Irreducible Polynomials...................................
- 2.2.6 Chebyshev Polynomials...................................
- 2.3 Linear Algebra................................................. viii Contents
- 2.3.1 Operations with Matrices..................................
- 2.3.2 Determinants............................................
- 2.3.3 The Inverse of a Matrix...................................
- 2.3.4 Systems of Linear Equations...............................
- 2.3.5 Vector Spaces, Linear Combinations of Vectors, Bases.........
- 2.3.6 Linear Transformations, Eigenvalues, Eigenvectors............
- 2.3.7 The Cayley–Hamilton and Perron–Frobenius Theorems........
- 2.4 Abstract Algebra...............................................
- 2.4.1 Binary Operations........................................
- 2.4.2 Groups.................................................
- 2.4.3 Rings
- 2.1 Identities and Inequalities
- 3 Real Analysis...................................................
- 3.1 Sequences and Series...........................................
- 3.1.1 Search for a Pattern.......................................
- 3.1.2 Linear Recursive Sequences
- 3.1.3 Limits of Sequences......................................
- 3.1.4 More About Limits of Sequences
- 3.1.5 Series..................................................
- 3.1.6 Telescopic Series and Products.............................
- 3.2 Continuity, Derivatives, and Integrals
- 3.2.1 Limits of Functions.......................................
- 3.2.2 Continuous Functions.....................................
- 3.2.3 The Intermediate Value Property............................
- 3.2.4 Derivatives and Their Applications..........................
- 3.2.5 The Mean Value Theorem
- 3.2.6 Convex Functions........................................
- 3.2.7 Indefinite Integrals
- 3.2.8 Definite Integrals.........................................
- 3.2.9 Riemann Sums
- 3.2.10 Inequalities for Integrals...................................
- 3.2.11 Taylor and Fourier Series..................................
- 3.3 Multivariable Differential and Integral Calculus.....................
- 3.3.1 Partial Derivatives and Their Applications....................
- 3.3.2 Multivariable Integrals....................................
- 3.3.3 The Many Versions of Stokes’ Theorem......................
- 3.4 Equations with Functions as Unknowns............................
- 3.4.1 Functional Equations
- 3.4.2 Ordinary Differential Equations of the First Order.............
- 3.4.3 Ordinary Differential Equations of Higher Order.............. Contents ix
- 3.4.4 Problems Solved with Techniques of Differential Equations.....
- 3.1 Sequences and Series...........................................
- 4 Geometry and Trigonometry......................................
- 4.1 Geometry.....................................................
- 4.1.1 Vectors.................................................
- 4.1.2 The Coordinate Geometry of Lines and Circles................
- 4.1.3 Conics and Other Curves in the Plane........................
- 4.1.4 Coordinate Geometry in Three and More Dimensions..........
- 4.1.5 Integrals in Geometry.....................................
- 4.1.6 Other Geometry Problems.................................
- 4.2 Trigonometry..................................................
- 4.2.1 Trigonometric Identities...................................
- 4.2.2 Euler’s Formula..........................................
- 4.2.3 Trigonometric Substitutions................................
- 4.2.4 Telescopic Sums and Products in Trigonometry...............
- 4.1 Geometry.....................................................
- 5 Number Theory.................................................
- 5.1 Integer-Valued Sequences and Functions...........................
- 5.1.1 Some General Problems...................................
- 5.1.2 Fermat’s Infinite Descent Principle..........................
- 5.1.3 The Greatest Integer Function..............................
- 5.2 Arithmetic....................................................
- 5.2.1 Factorization and Divisibility
- 5.2.2 Prime Numbers..........................................
- 5.2.3 Modular Arithmetic.......................................
- 5.2.4 Fermat’s Little Theorem...................................
- 5.2.5 Wilson’s Theorem........................................
- 5.2.6 Euler’s Totient Function...................................
- 5.2.7 The Chinese Remainder Theorem...........................
- 5.3 Diophantine Equations..........................................
- 5.3.1 Linear Diophantine Equations..............................
- 5.3.2 The Equation of Pythagoras................................
- 5.3.3 Pell’s Equation
- 5.3.4 Other Diophantine Equations...............................
- 5.1 Integer-Valued Sequences and Functions...........................
- 6 Combinatorics and Probability....................................
- 6.1 Combinatorial Arguments in Set Theory and Geometry...............
- 6.1.1 Set Theory and Combinatorics of Sets.......................
- 6.1.2 Permutations............................................
- 6.1.3 Combinatorial Geometry..................................
- 6.1.4 Euler’s Formula for Planar Graphs.......................... x Contents
- 6.1.5 Ramsey Theory..........................................
- 6.2 Binomial Coefficients and Counting Methods.......................
- 6.2.1 Combinatorial Identities...................................
- 6.2.2 Generating Functions.....................................
- 6.2.3 Counting Strategies.......................................
- 6.2.4 The Inclusion–Exclusion Principle..........................
- 6.3 Probability....................................................
- 6.3.1 Equally Likely Cases.....................................
- 6.3.2 Establishing Relations Among Probabilities
- 6.3.3 Geometric Probabilities...................................
- Methods of Proof.................................................... Solutions
- 6.1 Combinatorial Arguments in Set Theory and Geometry...............
- Algebra............................................................
- Real Analysis.......................................................
- Geometry and Trigonometry..........................................
- Number Theory.....................................................
- Combinatorics and Probability........................................
- Index of Notation
- Index..............................................................
ff
(ff)
#1