2.3 Linear Algebra 85
Now, there is a rather general result that states that a contractive function on a complete
metric space has a unique fixed point, which we will prove in Section 3.1.3. Recall that
a metric space is a setXendowed with a functionδ: X×X →[ 0 ,∞)satisfying
(i)δ(x, y)=0 if and only ifx=y, (ii)δ(x, y)=δ(y, x)for allx, y∈X, (iii)δ(x, y)+
δ(y, z)≥δ(x, z)for allx, y, z∈X. A metric space is complete if every Cauchy sequence
converges to a limit inX. A functionf:X→Xis contractive if for anyx =y,
δ(f (x), f (y))≤cδ(x, y)
for some fixed constantc,0<c<1.
With this in mind, we want to find a distance on the setKthat makes the functionf
defined above contractive. This is the Hilbert metric defined by the formula
δ(v, w)=ln
(
max
i
{
vi
wi
}/
min
i
{
vi
wi
})
,
forv=(v 1 ,v 2 ,...,vn)andw=(w 1 ,w 2 ,...,wn)∈K. That this satisfies the triangle
inequalityδ(v, w)+δ(w, u)≥δ(v, w)is a consequence of the inequalities
max
i
{
vi
wi
}
·max
i
{
wi
ui
}
≥max
i
{
vi
wi
}
,
min
i
{
vi
wi
}
·min
i
{
wi
ui
}
≤min
i
{
vi
wi
}
.
Let us show thatfis contractive. Ifv=(v 1 ,v 2 ,...,vn)andw=(w 1 ,w 2 ,...,wn)
are inK,v =w, and ifαi>0,i= 1 , 2 ,...,n, then
min
i
{
vi
wi
}
<
α 1 v 1 +α 2 v 2 +···+αnvn
α 1 w 1 +α 2 w 2 +···+αnwn
<max
i
{
vi
wi
}
.
Indeed, to prove the first inequality, add the obvious inequalitieswjmini{wvii}≤vj,j=
1 , 2 ,...,n. Becausev =wand both vectors are on the unit sphere, at least one inequality
is strict. The second inequality follows fromwjmaxi{wvii}≥vj,j= 1 , 2 ,...,n, where
again at least one inequality is strict.
Using this fact, we obtain for allj,1≤j≤n,
aj 1 v 1 +···+ajnvn
aj 1 w 1 +···+ajnwn
maxi
{
vi
wi
} < 1 <
aj 1 v 1 +···+ajnvn
aj 1 w 1 +···+ajnwn
mini
{
vi
wi
}.
Therefore,
maxj
{a
j 1 v 1 +···+ajnvn
aj 1 w 1 +···+ajnwn
}
maxi
{
vi
wi
} <
mini
{a
j 1 v 1 +···+ajnvn
aj 1 w 1 +···+ajnwn
}
mini
{
vi
wi