Science - USA (2021-07-09)

(Antfer) #1

and surface deformation of ice [e.g., surface
premelting ( 42 )]. In short, the elastic IMFs
demonstrated here may offer an alternative
platform for exploring ice physics and open
previously unexplored opportunities for ice-
related technology in various disciplines.


REFERENCES AND NOTES



  1. V. F. Petrenko, R. W. Whitworth,Physics of Ice(Oxford Univ.
    Press, 2002).

  2. T. Bartels-Rauschet al.,Rev. Mod. Phys. 84 , 885– 944
    (2012).

  3. C. Hoose, O. Möhler,Atmos. Chem. Phys. 12 , 9817–9854 (2012).

  4. R. Staroszczyk,Ice Mechanics for Geophysical and Civil
    Engineering Applications(Springer Nature, 2019).

  5. L. O’Rourkeet al.,Nature 586 , 697–701 (2020).

  6. J. Kepler,The Six-Cornered Snowflake(Oxford Clarendon Press,
    1966).

  7. P.W.Bridgman,Proc.Am.Acad.ArtsSci. 47 , 441– 558
    (1912).

  8. T. W. Zawidzki, H. M. Papee,Nature 196 , 568–569 (1962).

  9. G. Malenkov,J. Phys. Condens. Matter 21 , 283101 (2009).

  10. C. G. Salzmann,J. Chem. Phys. 150 , 060901 (2019).

  11. N. Urabe, T. Iwasaki, A. Yoshitake,Cold Reg. Sci. Technol. 3 ,
    29 – 37 (1980).

  12. J. J. Petrovic,J. Mater. Sci. 38 ,1–6 (2003).

  13. P. A. Santos-Flórez, C. J. Ruestes, M. de Koning,J. Chem. Phys.
    149 , 164711 (2018).

  14. T. Zhu, J. Li,Prog. Mater. Sci. 55 , 710–757 (2010).

  15. A. Banerjeeet al.,Science 360 , 300–302 (2018).

  16. A. Nieet al.,Nat. Commun. 10 , 5533 (2019).

  17. C. Danget al.,Science 371 , 76–78 (2021).

  18. G. Brambilla, D. N. Payne,Nano Lett. 9 , 831–835 (2009).

  19. L. Tonget al.,Nature 426 , 816–819 (2003).

  20. K. G. Libbrecht, T. Crosby, M. Swanson,J. Cryst. Growth 240 ,
    241 – 254 (2002).

  21. R. Maet al.,Nature 577 , 60–63 (2020).

  22. E. M. Schulson,Eng. Fract. Mech. 68 , 1839–1887 (2001).

  23. E. M. Schulson, P. Duval,Creep and Fracture of Ice(Cambridge
    Univ. Press, 2009).

  24. Z. M. Jendi, P. Servio, A. D. Rey,Cryst. Growth Des. 15 ,
    5301 – 5309 (2015).

  25. K. G. Libbrecht, V. M. Tanusheva,Phys. Rev. Lett. 81 , 176– 179
    (1998).

  26. Materials and methods are available as supplementary
    materials.

  27. K. G. Libbrecht,Annu. Rev. Mater. Res. 47 , 271–295 (2017).

  28. M. Mellor, D. M. Cole,Cold Reg. Sci. Technol. 6 , 207– 230
    (1983).

  29. J. Weertman,Annu.Rev.EarthPlanet.Sci. 11 , 215– 240
    (1983).

  30. B. Minceva-Sukarova, W. F. Sherman, G. R. Wilkinson,J. Phys.
    C Solid State Phys. 17 , 5833–5850 (1984).

  31. A. K. Garg,Phys. Status Solidi A 110 , 467–480 (1988).

  32. J. J. Neumeier,J. Phys. Chem. Ref. Data 47 , 033101 (2018).

  33. E. M. Schulson, A. L. Fortt,J. Geophys. Res. Solid Earth 117 ,
    B12204 (2012).

  34. T. Horikawa, D. Shimura, T. Mogami,MRS Commun. 6 ,9– 15
    (2016).

  35. S. G. Warren, R. E. Brandt,J. Geophys. Res. Atmos. 113 ,
    D14220 (2008).

  36. H. R. Philipp,J. Electrochem. Soc. 120 , 295–300 (1973).

  37. R. Kitamura, L. Pilon, M. Jonasz,Appl. Opt. 46 , 8118– 8133
    (2007).

  38. J. Lou, Y. Wang, L. Tong,Sensors 14 , 5823–5844 (2014).

  39. Y. Huanget al.,Sci. Adv. 2 , e1501010 (2016).

  40. T. Matsui, T. Yagasaki, M. Matsumoto, H. Tanaka,J. Chem.
    Phys. 150 , 041102 (2019).

  41. A. Falenty, T. C. Hansen, W. F. Kuhs,Nature 516 , 231– 233
    (2014).

  42. Y. M. Li, G. A. Somorjai,J. Phys. Chem. C 111 , 9631–9637 (2007).


ACKNOWLEDGMENTS
We thank X. K. Zhang, L. Y. Wu, and S. H. Chang at the Center
of Cryo-Electron Microscopy (CCEM), Zhejiang University, for their
technical assistance on cryo-TEM; X. J. Wang at the cryo-EM
facility of Westlake University for the technical assistance on
cryo-FIBM; and L. Yang and Y. Y. Jin for assistance with scattering
spectra analysis. This work was supported by the National Key
Research and Development Project of China (2018YFB2200404),
the National Natural Science Foundation of China (11527901), the


Natural Science Foundation of Zhejiang Province (LR21F050002),
and Fundamental Research Funds for the Central Universities.
Author contributions:L.T., X.G., and Y.R.S conceived of and
supervised the project. P.X. and B.C. performed the experiments.
Y.B., P.X., and B.C. performed the cryo-TEM measurements.
All authors analyzed the data. L.T., X.G., P.X., B.C., and Y.R.S. wrote
the manuscript. All authors discussed the results and commented
on the paper.Competing interests:The authors declare no
competing interests.Data and materials availability:All data are
available in the main text or the supplementary materials.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/373/6551/187/suppl/DC1
Materials and Methods
Figs. S1 to S10
Table S1
References ( 43 – 46 )
Movies S1 to S3
6 March 2021; accepted 2 June 2021
10.1126/science.abh3754

PLANT SCIENCE

Cauliflower fractal forms arise


from perturbations of floral gene networks


Eugenio Azpeitia^1 †, Gabrielle Tichtinsky^2 , Marie Le Masson^2 , Antonio Serrano-Mislata^3 ,
Jérémy Lucas^2 , Veronica Gregis^4 , Carlos Gimenez^3 , Nathanaël Prunet5,6, Etienne Farcot^7 ,
Martin M. Kater^4 , Desmond Bradley^8 , Francisco Madueño^3 , Christophe Godin^1 *, Francois Parcy^2 *

Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl
patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested
over a wide range of scales. How such a fractal, self-similar organization emerges from developmental
mechanisms has remained elusive. Combining experimental analyses in anArabidopsis thaliana
cauliflower-like mutant with modeling, we found that curd self-similarity arises because the
meristems fail to form flowers but keep the“memory”of their transient passage in a floral state.
Additional mutations affecting meristem growth can induce the production of conical structures
reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like
forms may emerge from the combination of key, defined perturbations of floral developmental
programs and growth dynamics.

A


bove-ground plant architectures arise
from the activity of shoot apical meri-
stems (SAMs), pools of stem cells that
give rise to organs such as leaves, shoots,
or flowers. The arrangement of organs
on stems is called phyllotaxis. Plants with a
spiral phyllotaxis usually form two families
of organ spirals that are visible on compact
structures such as flower heads, pine cones,
or cacti (Fig. 1, A to C). These two families of
spirals turn in opposite directions and come
in two consecutive numbers of the Fibonacci
series (Fig. 1A) ( 1 ). In cauliflowers, spiral fam-

ilies are visible not only at one but at several
scales (Fig. 1, D to F). This self-similar organi-
zation culminates in the Romanesco cultivar
in which the spirals appear in relief because of
their conical shape at all scales, a geometrical
feature conferring the whole curd a marked
fractal-like aspect (Fig. 1G).
Cauliflowers (Brassica oleraceavar.botrytis)
were domesticated from cabbages ( 2 ). The
cauliflower inflorescence (the flower-bearing
shoot) takes a curd shape because each emerg-
ing flower primordia never matures to the floral
stage but instead generates more curd-shaped
inflorescences ( 2 , 3 ). InB. oleracea,the genetic
modifications causing curd development are
still debated and likely affect multiple genes
( 2 – 5 ). However, cauliflower-like structures also
exist in the model BrassicaceaeArabidopsis
thalianaand are caused by a double mutation
inAPETALA1(AP1) andCAULIFLOWER(CAL)
(Fig. 1, H and I), two paralogous genes encod-
ing MADS-box transcription factors (TFs) pro-
moting floral development ( 6 , 7 ). TheArabidopsis
molecular regulators governing the develop-
ment of shoots and flowers have been largely
identified ( 8 – 10 ) (table S1). Network models
based on these regulators have been proposed
to explain flower and inflorescence development
( 11 – 14 ). However, whether variants of these net-
works are able to account for the development
ofArabidopsis ap1 calcurds is unknown.

192 9JULY2021•VOL 373 ISSUE 6551 sciencemag.org SCIENCE


(^1) Laboratoire de Reproduction et Développement des Plantes,
Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria,
F-69364 Lyon, France.^2 Laboratoire Physiologie Cellulaire et
Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-
DBSCI-LPCV, F-38054 Grenoble, France.^3 Instituto de
Biología Molecular y Celular de Plantas (IBMCP), Consejo
Superior de Investigaciones Científicas (CSIC) - Universidad
Politécnica de Valencia (UPV), 46022 Valencia, Spain.
(^4) Dipartimento di Bioscienze, Università degli Studi di Milano,
20133 Milan, Italy.^5 Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena,
CA 91125, USA.^6 Department of Molecular, Cell and
Developmental Biology, University of California, Los Angeles,
CA 90095, USA.^7 School of Mathematical Sciences,
University of Nottingham, Nottingham NG7 2RD, UK.
(^8) Department of Cell and Developmental Biology, John Innes
Centre, Norwich NR4 7UH, UK.
*Corresponding author. Email: [email protected] (C.G.);
[email protected] (F.P.)†Present address: Centro de
Ciencias Matemáticas, Universidad Nacional Autónoma de México,
Morelia, México.
RESEARCH | RESEARCH ARTICLES

Free download pdf