Science - USA (2021-07-09)

(Antfer) #1

the period in which Mars had surface liquid
water.


REFERENCES AND NOTES



  1. C. E. Weaver,Clays, Muds, and Shales(Elsevier, 1989), p. 819.

  2. R. E. Summonset al.,Astrobiology 11 , 157–181 (2011).

  3. J. P. Grotzinger, R. E. Milliken, The sedimentary rock record of
    Mars: Distribution, origins, and global stratigraphy, in
    Sedimentary Geology of Mars,J. P. Grotzinger, R. E. Milliken,
    Eds. (SEPM Special Publication, Tulsa, OK, 2012), vol. 102.

  4. D. T. Vanimanet al.,Science 343 , 1243480 (2014).

  5. T. F. Bristowet al.,Sci. Adv. 4 , eaar3330 (2018).

  6. J. L. Eigenbrodeet al.,Science 360 , 1096–1101 (2018).

  7. N. Mangoldet al.,Icarus 321 , 619–631 (2019).

  8. J. P. Grotzingeret al.,Science 350 , aac7575 (2015).

  9. J. A. Hurowitzet al.,Science 356 , eaah6849 (2017).

  10. D. T. Vanimanet al.,Am. Mineral. 103 , 1011–1020 (2018).

  11. A. S. Yenet al.,Earth Planet. Sci. Lett. 471 , 186–198 (2017).

  12. E. B. Rampeet al.,Earth Planet. Sci. Lett. 471 , 172–185 (2017).

  13. C. N. Achilleset al.,J. Geophys. Res. Planets 125 , JE006295
    (2020).

  14. E. B. Rampeet al.,J. Geophys. Res. Planets 125 ,
    e2019JE006306 (2020).

  15. A. A. Fraemanet al.,J. Geophys. Res. Planets 125 , JE006527
    (2020).

  16. J. L’Haridonet al.,J. Geophys. Res. Planets 125 ,
    e2019JE006299 (2020).

  17. R. J. Smithet al.,J. Geophys. Res. Planets 126 ,
    e2020JE006782 (2021).

  18. P. E. Martinet al.,J. Geophys. Res. 122 , 2803–2818 (2017).

  19. R. E. Milliken, J. P. Grotzinger, B. J. Thomson,Geophys. Res.
    Lett. 37 , L04201 (2010).

  20. R. Y. Sheppard, R. E. Milliken, M. Parente, Y. Itoh,J. Geophys.
    Res. Planets 126 , e2020JE006372 (2021).

  21. J. P. Bibringet al.,Science 312 , 400–404 (2006).

  22. K. M. Stacket al.,Sedimentology 66 , 1768–1802 (2019).

  23. L. A. Edgaret al.,J. Geophys. Res. Planets 125 ,
    e2019JE006307 (2020).

  24. N. T. Steinet al.,Geophys. Res. Planets 125 , e2019JE006298
    (2020).

  25. Materials and methods are available as supplementary materials.

  26. B. Sutteret al.,J. Geophys. Res. 122 , 2574–2609 (2017).

  27. T. F. Bristowet al.,Am. Mineral. 100 , 824–836 (2015).

  28. A. C. McAdamet al.,J. Geophys. Res. Planets 125 ,
    e2019JE006309 (2020).

  29. M. Heuser, P. Andrieux, S. Petit, H. Stanjek,Clay Miner. 48 ,
    97 – 103 (2013).

  30. B. W. Evans, S. Guggenheim,Rev. Mineral. Geochem. 19 ,
    225 – 294 (1988).

  31. H. Y. McSween Jr., T. C. Labotka, C. E. Viviano-Beck,Meteorit.
    Planet. Sci. 50 , 590–603 (2015).

  32. M. J. Wilson,Clay Miner. 39 , 233–266 (2004).

  33. D. R. Veblen, P. R. Buseck,Science 206 , 1398–1400 (1979).

  34. P. C. Ryan, F. J. Huertas, L. N. Pincus, W. Painter,Clays Clay
    Miner. 67 , 488–506 (2019).

  35. E. S. Amador, J. L. Bandfield, N. H. Thomas,Icarus 311 ,
    113 – 134 (2018).

  36. F. Klein, W. Bach, T. M. McCollom,Lithos 178 , 55–69 (2013).

  37. S. Q. Lang, W. J. Brazelton,Philos. Trans. A Math. Phys. Eng.
    Sci. 378 , 20180429 (2020).

  38. L. L. Baker, O. K. Neill,Am. Mineral. 102 , 1632–1645 (2017).

  39. J. F. Banfield, B. F. Jones, D. R. Veblen,Geochim. Cosmochim.
    Acta 55 , 2795–2810 (1991).

  40. J. Frydenvanget al.,Geophys. Res. Planets 125 ,
    e2019JE006320 (2020).

  41. S. M. McLennan,Geology 31 , 315–318 (2003).

  42. N. J. Tosca, S. M. McLennan, M. P. Lamb, J. P. Grotzinger,
    J. Geophys. Res. 116 , E05004 (2011).

  43. D. Larsen,Geosphere 4 , 612–639 (2008).

  44. P. G. Macumber,Chem. Geol. 96 ,1–18 (1992).

  45. D. M. Deocampo, B. F. Jones, inTreatise on Geochemistry,
    H. D. Holland, K. K. Turekian, Eds. (Elsevier, 2014), vol. 7,
    pp. 437–469.

  46. P. M. English,Sediment. Geol. 143 , 219–244 (2001).

  47. J. Jankowski, G. Jacobson,J. Hydrol. (Amst.) 108 , 123– 173
    (1989).

  48. N. H. Thomaset al.,Geophys. Res. Lett. 46 , 10754–10763 (2019).

  49. W. Rapinet al.,Nat. Geosci. 12 , 889–895 (2019).

  50. R. dos Santos, M. Patel, J. Cuadros, Z. Martins,Icarus 277 ,
    342 – 353 (2016).

  51. T. Bristow, Data from: Brine driven destruction of clay minerals
    in Gale crater, Mars., Dryad, (2021); https://doi.org/10.5061/
    dryad.k3j9kd576.


ACKNOWLEDGMENTS
We thank R. Kleeberg for help developing the CheMin instrument
profile model for BGMN and A. Derkowski for informative discussion.
J. C. Corona kindly provided XRD data from Fe talc, and P. De Deckker
shared knowledge of Australian lakes. We thank J. Bishop and two
anonymous reviewers for helping improve the manuscript.
We acknowledge the support of the Jet Propulsion Lab engineering
and management teams and MSL science team members who
participated in tactical and strategic operations, without whom
the data presented here could not have been collected.Funding:
Some of this research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration (NASA). A.A.F.,
A.C.M., and C.M.F. acknowledge funding by the MSL Participating
Scientist Program, NASA solicitation NNH15ZDA001N. J.F.
acknowledges support from the Carlsberg Foundation. J.P.G. received
additional funding from the Simons Collaboration for the Origin of Life.
Author contributions:T.F.B. wrote the manuscript, with
corrections, discussions, and/or revised text from coauthors. J.C. led
one-dimensional modeling of clay minerals. S.J.C. quantified the
abundances of clay minerals and the x-ray amorphous phase from
CheMin XRD data. G.W.D. led efforts to identify the 9.22-Å phase
from XRD data. C.M.F. led efforts to establish the relationships
between rock strata exposed at VRR and GT, capturing them
in Figs. 1 and 2. J.F. analyzed ChemCam Li data and helped produce
Fig. 2. A.C.M. led the interpretation of SAM EGA data and helped
produce Fig. 4 and fig. S4. A.S.Y. compiled the bulk geochemical
data from the Alpha Particle X-ray Spectrometer shown in table S1

and used to generate fig. S5. R.V.M. compiled the XRD data
used to determine the angular resolution of the CheMin instrument
(fig. S2). R.E.M. led comparisons of orbital and ground-based
mineral data. C.N.A., T.F.B., D.W.M., S.M.M., E.B.R., M.T.T., V.T.,
and D.T.V. determined the abundances of crystalline phases
in GT samples from XRD data. D.F.B., A.B.B., K.A.B., A.A.F., V.K.F.,
R.G., J.P.G., P.R.M., E.B.R., D.T.V., R.C.W., and A.R.V. designed
the rover instruments and guided the mission. All authors performed
operational roles in data collection.Competing interests:V.K.F. is
also affiliated with the Department of Physics and Astronomy,
Carleton College, Northfield, MN 55057, USA.Data and materials
availability:AllCuriositydata presented in this paper are archived
in NASA’s Planetary Data System; the URLs and file identifications
are listed in table S5. The software written by the authors of
this paper and files needed to replicate the analyses are publicly
available at Dryad ( 51 ).

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/373/6551/198/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S8
Tables S1 to S5
References ( 52 – 79 )

24 January 2021; accepted 28 May 2021
10.1126/science.abg5449

REPORTS



GEOMORPHOLOGY

The life span of fault-crossing channels


Kelian Dascher-Cousineau*, Noah J. Finnegan, Emily E. Brodsky

Successive earthquakes can drive landscape evolution. However, the mechanism and pace with
which landscapes respond remain poorly understood. Offset channels in the Carrizo Plain, California,
capture the fluvial response to lateral slip on the San Andreas Fault on millennial time scales. We
developed and tested a model that quantifies competition between fault slip, which elongates
channels, and aggradation, which causes channel infilling and, ultimately, abandonment. Validation
of this model supports a transport-limited fluvial response and implies that measurements
derived from present-day channel geometry are sufficient to quantify the rate of bedload transport
relative to slip rate. Extension of the model identifies the threshold for which persistent change
in transport capacity, obliquity in slip, or advected topography results in reorganization of the
drainage network.

T


he recognition in 1908 that ephemeral
streams in the Carrizo Plain in southern
California preserved a passive record of
lateral fault offset transformed the study
of active strike-slip faults ( 1 – 5 ). However,
offset on these stream channels generally does
not exceed tens to hundreds of meters. Flow
eventually overtops channels, typically spilling
straight across the fault and resetting the re-
corded offset (Fig. 1, A to C) ( 2 , 3 , 6 ). Variability
in channel offsets suggests a reset mechanism
that depends primarily on local channel con-
figuration rather than regional climate or
earthquake history. Slip rates on the order of

centimeters per year on the San Andreas Fault
imply that channels reset on millennial time
scales, thereby limiting their utility as record-
ers of fault slip ( 2 ). We instead leveraged this
tectonic-geomorphic interaction to better un-
derstand how the drainage network responds
to perturbation. We developed a quantitative
prediction for the channel life span as a function
of fault slip rate, present-day channel geome-
try, and sediment transport capacity assuming
transport-limited conditions. We validated our
model by testing it against a LiDAR (light de-
tection and ranging)–derived record of fault-
crossing channels in the Carrizo Plain and
explore implications for the long-term evolu-
tion of strike-slip fault landscapes.
Wallace ( 2 ) identified channel sedimentation
as a control on the evolution of fault-crossing

204 9JULY2021•VOL 373 ISSUE 6551 sciencemag.org SCIENCE


Department of Earth and Planetary Sciences, University of
California, Santa Cruz, CA, USA.
*Corresponding author. Email: [email protected]

RESEARCH

Free download pdf