Science - USA (2021-07-09)

(Antfer) #1

To further confirm the presence of PtSn
surface alloys, XPS of the freshly reduced
Pt 1 Sn 1 /SiO 2 catalyst showed that the atomic
ratio of Pt and Sn was ~1, consistent with the
nominal loading (fig. S8). Figure 4B shows the
XPS spectra associated with the Pt 4f7/2elec-
tronic state, demonstrating that the Pt atoms
were in the metallic Pt(0) state. Additionally,
the Pt 4f7/2peak shifted toward lower binding
energy (70.5 eV) relative to a monometallic Pt
reference (71.0 eV), in agreement with prior
reports that the formation of Pt–Sn caused a
slight electron transfer from Sn to Pt that in-
creased the local electron density on Pt and
local Coulombic repulsion, thereby lowering
the electron binding energy ( 60 – 62 ). Further-
more, the Sn 3d5/2XPS spectra in Fig. 4C show
that most Sn atoms were metallic Sn, and a
small fraction of Sn existed as SnO or SnO 2 ,
further confirming the formation of PtSn in-
termetallic NPs ( 63 , 64 ).
The real-space Pt LIIIEXAFS spectra for the
Pt 1 Sn 1 /SiO 2 catalyst (Fig. 4D) are substantially
different from the spectra of monometallic Pt
and indicate the mixing of Pt and Sn atoms.
Thebest-fitspectrumforthePt 1 Sn 1 /SiO 2 catalyst
is characterized by the presence of the Pt-Pt and
Pt-Sn scattering paths, consistent with the for-
mation of PtSn intermetallic phases. The param-
eters used to obtain the best-fit spectra are
provided in the Fig. 4D caption.
When assigning EXAFS spectra to a geomet-
ric structure, it is instructive to compare the
measured bond distances to those correspond-
ing to thermodynamically stable phases of a
material. For Pt 3 Sn, both Pt-Pt and Pt-Sn bond
distances are 2.83 Å. By contrast, the Pt-Pt bond
distance in PtSn is 2.72 Å, whereas the Pt-Sn
bond distance is 2.73 Å ( 63 , 64 ). The Pt-Pt and
Pt-Sn bond distances experimentally measured
for the Pt 1 Sn 1 /SiO 2 catalyst (2.75 and 2.71 Å,
respectively) suggest that the catalyst was likely
a mix of Pt 3 Sn and PtSn, with a higher concen-
tration of the PtSn phase, as no peaks were
observed at 2.83 Å.
Data in Fig. 4, E and F, show the XANES
spectra associated with the Pt LIII-edge and
Sn K-edge, respectively, of the Pt 1 Sn 1 /SiO 2 cat-
alyst and relevant controls. The Pt LIII-edge
XANES spectra in Fig. 4E are consistent with
the analysis of the EXAFS data, indicating that
the mixing of Pt and Sn took place in the re-
duced Pt 1 Sn 1 /SiO 2 catalyst. Indeed, the forma-
tion of a stable Pt-Sn phase was complete by
390°C—above this temperature, no further
changes were observed (Fig. 4E, inset). A slight
increase in the Pt LIII-edge energy and a de-
crease in white-line intensity and its broad-
ening observed for Pt 1 Sn 1 /SiO 2 compared with
pure Pt could be attributed to the forma-
tion of the Pt-Sn phase, consistent with
XPS results that showed slight electron
transfer from Sn to Pt. Likewise, the slight
increase in Sn K-edge energy and the in-


crease in the white-line intensity relative
to Sn foil in (Fig. 4F) indicated that Sn existed
in both metallic and oxide forms on the cat-
alyst surface.

REFERENCES AND NOTES


  1. National Academies of Sciences, Engineering, and Medicine,
    The Changing Landscape of Hydrocarbon Feedstocks for
    Chemical Production: Implications for Catalysis: Proceedings of
    a Workshop(The National Academies Press, 2016);
    https://doi.org/10.17226/23555.

  2. Focus Catal. 2019 , 5 (2019).

  3. B. Frank, A. Dinse, O. Ovsitser, E. V. Kondratenko,
    R. Schomäcker,Appl. Catal. A Gen. 323 , 66–76 (2007).

  4. P. Chaturbedy, M. Ahamed, M. Eswaramoorthy,ACS Omega 3 ,
    369 – 374 (2018).

  5. J. T. Grantet al.,Science 354 , 1570–1573 (2016).

  6. Z. Zhang, E. Jimenez-Izal, I. Hermans, A. N. Alexandrova,
    J. Phys. Chem. Lett. 10 , 20–25 (2019).

  7. A. Agarwal, D. Sengupta, M. El-Halwagi,ACS Sustain.
    Chem. Eng. 6 , 2407–2421 (2018).

  8. R. Rabenhorst,“On Purpose–What’s Driving New Propane
    Dehydrogenation Projects in North America?”Nexant (2019);
    http://www.nexant.com/resources/purpose-what-s-driving-new-
    propane-dehydrogenation-projects-north-america.

  9. J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez,
    B. M. Weckhuysen,Chem. Rev. 114 , 10613– 10653
    (2014).

  10. W. Spieker, G. J. Nedohin, inHandbook of Petroleum Refining
    Processes, R. A. Meyers, Ed. (McGraw-Hill, ed. 4, 2016),
    pp. 173–182.

  11. M. M. Bhasin, J. H. McCain, B. V. Vora, T. Imai, P. R. Pujadó,
    Appl. Catal. A Gen. 221 , 397–419 (2001).

  12. A. Iglesias-Juezet al.,J. Catal. 276 , 268–279 (2010).

  13. B. Frank, T. P. Cotter, M. E. Schuster, R. Schlögl, A. Trunschke,
    Chemistry 19 , 16938–16945 (2013).

  14. B. Huet al.,ACS Catal. 5 , 3494–3503 (2015).

  15. Low interaction between the support and metal NP leads to the
    formation of PtSn NPs wherein the effect of Sn dominates,
    leading to poor activity but high selectivity and stability
    (fig. S3).

  16. B. V. Vora, P. R. Pujado, inEncyclopedia of Chemical
    Processing, S. Lee, Ed. (Taylor & Francis, 2006), pp. 379–397.

  17. B. V. Vora,Top. Catal. 55 , 1297–1308 (2012).

  18. O. A. Bariås, A. Holmen, E. A. Blekkan,J. Catal. 158 ,1– 12
    (1996).

  19. J. Salmones, J. A. Wang, J. A. Galicia, G. Aguilar-Rios,
    J. Mol. Catal. Chem. 184 , 203–213 (2002).

  20. Y. Zhou, S. M. Davis,“Low-Pressure Dehydrogenation of Light
    Paraffins,”US Patent 5,214,227 (1993).

  21. N. Kaylor, R. J. Davis,J. Catal. 367 , 181–193 (2018).

  22. Y. Zhang, Y. Zhou, L. Huang, M. Xue, S. Zhang,Ind. Eng.
    Chem. Res. 50 , 7896–7902 (2011).

  23. P. L. De Cola, R. Gläser, J. Weitkamp,Appl. Catal. A Gen. 306 ,
    85 – 97 (2006).

  24. Y. Duan, Y. Zhou, Y. Zhang, X. Sheng, M. Xue,Catal. Lett. 141 ,
    120 – 127 (2011).

  25. G. Siddiqi, P. Sun, V. Galvita, A. T. Bell,J. Catal. 274 , 200– 206
    (2010).

  26. P. Sun, G. Siddiqi, W. C. Vining, M. Chi, A. T. Bell,J. Catal. 282 ,
    165 – 174 (2011).
    27.D.Shee,A.Sayari,Appl. Catal. A Gen. 389 , 155– 164
    (2010).

  27. F. J. Pérez-Reina, E. Rodríguez-Castellón, A. Jiménez-López,
    Langmuir 15 , 8421–8428 (1999).

  28. M. Alcántara-Rodríguez, E. Rodríguez-Castellón,
    A. Jiménez-López,Langmuir 15 , 1115–1120 (1999).
    30.X.Zhang,Y.Yue,Z.Gao,Catal. Lett. 83 , 19– 25
    (2002).

  29. K. L. Fujdala, D. Tilley,J. Catal. 218 , 123–134 (2003).
    32.J.J.H.B.Sattleret al.,Chem. Commun. 49 , 1518– 1520
    (2013).

  30. M. Saito, S. Watanabe, I. Takahara, M. Inaba, K. Murata,
    Catal. Lett. 89 , 213–217 (2003).

  31. B. Zheng, W. Hua, Y. Yue, Z. Gao,J. Catal. 232 , 143– 151
    (2005).

  32. P. Michorczyk, J. Ogonowski,Appl. Catal. A Gen. 251 , 425– 433
    (2003).

  33. B. Xu, B. Zheng, W. Hua, Y. Yue, Z. Gao,J. Catal. 239 , 470– 477
    (2006).

  34. M. Chenet al.,J. Catal. 256 , 293–300 (2008).

  35. H. Zhuet al.,J. Catal. 320 , 52–62 (2014).
    39. Y. Zhanget al.,J. Mol. Catal. Chem. 381 , 138–147 (2014).
    40. Y. Daiet al.,J. Catal. 381 , 482–492 (2020).
    41. X. Liuet al.,Chem. Eng. J. 247 , 183–192 (2014).
    42. N. Prakash, M. H. Lee, S. Yoon, K. D. Jung,Catal. Today
    293 – 294 , 33–41 (2017).
    43. J. Liet al.,J. Catal. 352 , 361–370 (2017).
    44. Y. Zhanget al.,Catal. Commun. 7 , 860–866 (2006).
    45. L. Shiet al.,Angew. Chem. Int. Ed. 54 , 13994– 13998
    (2015).
    46. E. J. Jang, J. Lee, H. Y. Jeong, J. H. Kwak,Appl. Catal. A Gen.
    572 ,1–8 (2019).
    47. H. Xionget al.,Angew. Chem. Int. Ed. 56 , 8986–8991 (2017).
    48. L. Liuet al.,Nat. Catal. 3 , 628–638 (2020).
    49. L. Denget al.,ChemCatChem 6 , 2680–2691 (2014).
    50. L. Deng, T. Shishido, K. Teramura, T. Tanaka,Catal. Today 232 ,
    33 – 39 (2014).
    51. L. Liuet al.,Nat. Mater. 18 , 866–873 (2019).
    52. Y. Wang, Z. P. Hu, X. Lv, L. Chen, Z. Y. Yuan,J. Catal. 385 ,
    61 – 69 (2020).
    53. Q. Sunet al.,Angew.Chem.Int.Ed. 59 , 19450– 19459
    (2020).
    54. H. N. Pham, J. J. H. B. Sattler, B. M. Weckhuysen, A. K. Datye,
    ACS Catal. 6 , 2257–2264 (2016).
    55. D. Rodríguez, J. Sánchez, G. Arteaga,J. Mol. Catal. Chem. 228 ,
    309 – 317 (2005).
    56. K. Balakrishnan, J. Schwank,J. Catal. 138 , 491– 499
    (1992).
    57. S. G. Podkolzin, J. Shen, J. J. De Pablo, J. A. Dumesic,
    J. Phys. Chem. B 104 , 4169–4180 (2000).
    58. Q. Wang, D. Tichit, F. Meunier, H. Guesmi,J. Phys. Chem. C
    124 , 9979–9989 (2020).
    59. A. Moscu, Y. Schuurman, L. Veyre, C. Thieuleux, F. Meunier,
    Chem. Commun. 50 , 8590–8592 (2014).
    60. J. Shen, J. M. Hill, R. M. Watwe, B. E. Spiewak, J. A. Dumesic,
    J. Phys. Chem. B 103 , 3923–3934 (1999).
    61. J. N. Schwämmlein, P. A. L. Torres, H. A. Gasteiger,
    H. A. El-Sayed,Sci. Rep. 10 , 59 (2020).
    62. J. A. Rodriguez, T. Jirsak, S. Chaturvedi, J. Hrbek,J. Am. Chem.
    Soc. 120 , 11149–11157 (1998).
    63. J. M. Ramallo-Lópezet al.,J. Phys. Chem. B 107 , 11441– 11451
    (2003).
    64. G. J. Siriet al.,Appl. Catal. A Gen. 278 , 239– 249
    (2005).


ACKNOWLEDGMENTS
We thank R. J. Meyer, S. F. Liu, and J. R. Johnson at ExxonMobil for
their help in obtaining EXAFS data and fruitful discussion on
reaction data and catalyst characterization. We thank T. Ma and
H. Sun at University of Michigan for their help in collecting TEM
data.Funding:This material is based on work supported by RAPID
under award DE-EE0007888. The materials characterization part
of the work was supported by the US DOE Office of Basic Energy
Sciences, Division of Chemical Sciences (DE-SC0021008). The
authors acknowledge the financial support of the University of
Michigan College of Engineering and technical support from the
Michigan Center for Materials Characterization. R.A. acknowledges
support from the National Science Foundation Graduate Research
Fellowship under grant DGE 1256260.Author contributions:S.L.
and A.H.M. conceived the project and designed the experiments.
A.H.M., R.A., J.W., and V.O.I. designed and constructed the reactor
used to obtain reaction data. A.H.M. and R.A. performed the
propane dehydrogenation experiments. R.A., A.H.M., J.W., and
V.O.I. performed catalyst characterization. All authors analyzed the
reaction data and catalyst characterization data. S.L., A.H.M.,
and R.A. wrote the paper. All authors edited the manuscript.
Competing interests:The authors declare no competing interests.
Data and materials availability:All data needed to evaluate the
conclusions in the paper are present in the paper and/or the
supplementary materials. Additional data related to this paper may
be requested from the authors.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/373/6551/217/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S10
Tables S1 to S3
References

27 January 2021; accepted 28 May 2021
10.1126/science.abg7894

222 9JULY2021•VOL 373 ISSUE 6551 sciencemag.org SCIENCE


RESEARCH | REPORTS

Free download pdf