laboratory evaluation study.Lancet Microbe10.1016/S2666-
5247(21)00056-2 (2021). doi:10.1001/jamapediatrics.2020.3988;
pmid: 32857112
- M. S. Hanet al., Clinical Characteristics and Viral RNA
Detection in Children With Coronavirus Disease, 2019 in the
Republic of Korea.JAMA Pediatr. 175 , 73–80 (2021).
doi:10.1001/jamapediatrics.2020.3988; pmid: 32857112 - C. A. Pierceet al., Natural mucosal barriers and COVID-19 in
children.JCI Insight 6 , e148694 (2021). doi:10.1172/
jci.insight.148694; pmid: 33822777 - Q. Liet al., Early Transmission Dynamics in Wuhan, China, of
Novel Coronavirus-Infected Pneumonia.N. Engl. J. Med. 382 ,
1199 – 1207 (2020). doi:10.1056/NEJMoa2001316;
pmid: 31995857 - L. Ferrettiet al., The timing of COVID-19 transmission.
medRxiv [preprint]. 7 September 2020. pmid: 20188516 - X. Heet al., Temporal dynamics in viral shedding
and transmissibility of COVID-19.Nat. Med. 26 ,
672 – 675 (2020). doi:10.1038/s41591-020-0869-5;
pmid: 32296168 - C. McAloonet al., Incubation period of COVID-19: A rapid
systematic review and meta-analysis of observational research.
BMJ Open 10 , e039652 (2020). doi:10.1136/bmjopen-2020-
039652 ; pmid: 32801208 - P. Banka, C. Comiskey, The incubation period of COVID-19:
A scoping review and meta-analysis to aid modelling
and planning. MedRxiv 20216143 [preprint].
3November2020. - B. Rai, A. Shukla, L. K. Dwivedi, Incubation period for COVID-19:
A systematic review and meta-analysis.J. Public Health
10.1007/s10389-021-01478-1 (2021). doi:10.1007/s10389-
021-01478-1; pmid: 33643779 - J. Bullardet al., Predicting infectious SARS-CoV-2 from
diagnostic samples.Clin. Infect. Dis. 71 , 2663–2666 (2020).
doi:10.1093/cid/ciaa638 - M. M. Aronset al., Presymptomatic SARS-CoV-2 Infections and
Transmission in a Skilled Nursing Facility.N. Engl. J. Med. 382 ,
2081 – 2090 (2020). doi:10.1056/NEJMoa2008457;
pmid: 32329971 - R. Challenet al., Risk of mortality in patients infected with
SARS-CoV-2 variant of concern 202012/1: Matched cohort
study.BMJ 372 , n579 (2021). pmid: 33687922 - K. R. W. Emary, T. Golubchik, Efficacy of ChAdOx1 nCoV-19
(AZD1222) vaccine against SARS-CoV-2 VOC 202012/01
(B.1.1.7). SSRN [preprint]. 4 February 2021;https://ssrn.com/
abstract=3779160. - M. D. Parkeret al., Altered subgenomic RNA expression in
SARS-CoV-2 B.1.1.7 infections. bioRxiv 433156 [preprint].
4 March 2021. pmid: 433156 - M. Kiddet al., S-variant SARS-CoV-2 lineage B1.1.7 is
associated with significantly higher viral loads in samples
tested by TaqPath Polymerase Chain Reaction.J.Infect.Dis.
jiab082 (2021). doi:10.1093/infdis/jiab082;
pmid: 33580259 - T. Golubchiket al., COVID-19 Genomics UK (COG-UK)
Consortium, Early analysis of a potential link between viral load
and the N501Y mutation in the SARS-COV-2 spike protein.
medRxiv 20249080 [preprint]. 15 January 2021.
pmid: 20249080 - S. Kissleret al.,“Densely sampled viral trajectories suggest
longer duration of acute infection with B.1.1.7 variant relative to
non-B.1.1.7 SARS-CoV-2”(Harvard T. H. Chan School of
Public Health, 2021);https://dash.harvard.edu/handle/1/
37366884. - Public Health England,“Investigation of novel
SARS-CoV-2 Variant of Concern 202012/01: Technical
briefing 5”(2021). - K. Leung, M. H. Shum, G. M. Leung, T. T. Lam, J. T. Wu, Early
transmissibility assessment of the N501Y mutant strains of
SARS-CoV-2 in the United Kingdom, October to November
2020.Euro Surveill. 26 , (2021). doi:10.2807/1560-7917.
ES.2020.26.1.2002106; pmid: 33413740 - N. G. Davieset al., Estimated transmissibility and impact of
SARS-CoV-2 lineage B.1.1.7 in England.Science 372 ,
eabg3055 (2021). doi:10.1126/science.abg3055;
pmid: 33658326 - R. Liet al., Substantial undocumented infection facilitates the
rapid dissemination of novel coronavirus (SARS-CoV-2).
Science 368 , 489–493 (2020). doi:10.1126/science.abb3221;
pmid: 32179701 - Public Health England,“Investigation of novel SARS-CoV-2
Variant of Concern 202012/01: Technical briefing 1”
(2020).
58. P.-C. Bürkner, brms: An R Package for Bayesian Multilevel
Models Using Stan.J. Stat. Softw. 80 , (2017). doi:10.18637/
jss.v080.i01
59. P.-C. Bürkner, Advanced Bayesian Multilevel Modeling with
the R Package brms.R J. 10 , 395 (2018). doi:10.32614/RJ-
2018-017
60. R Core Team,R: A Language and Environment for Statistical
Computing(R Foundation for Statistical Computing, 2020);
http://www.R-project.org/.
61. K. Basileet al., Cell-based culture of SARS-CoV-2 informs
infectivity and safe de-isolation assessments during COVID-19.
Clin. Infect. Dis.ciaa1579 (2020). doi:10.1093/cid/ciaa1579;
pmid: 33098412
62. B. La Scolaet al., Viral RNA load as determined by cell culture
as a management tool for discharge of SARS-CoV-2 patients
from infectious disease wards.Eur. J. Clin. Microbiol. Infect. Dis.
39 , 1059–1061 (2020). doi:10.1007/s10096-020-03913-9;
pmid: 32342252
63. J. J. A. van Kampenet al., Duration and key determinants of
infectious virus shedding in hospitalized patients with
coronavirus disease-2019 (COVID-19).Nat. Commun. 12 , 267
(2021). doi:10.1038/s41467-020-20568-4; pmid: 33431879
64. M. Wideraet al., Surveillance of SARS-CoV-2 in Frankfurt am
Main from October to December 2020 Reveals High Viral
Diversity Including Spike Mutation N501Y in B.1.1.70 and
B.1.1.7.Microorganisms 9 , 748 (2021). doi:10.3390/
microorganisms9040748; pmid: 33918332
65. T. Toptanet al., Evaluation of a SARS-CoV-2 rapid antigen test:
Potential to help reduce community spread?J. Clin. Virol. 135 ,
104713 (2021). doi:10.1016/j.jcv.2020.104713;
pmid: 33352470
66. S. Herberhold, A.-M. Eis-Hübinger, M. Panning, Frequent
detection of respiratory viruses by real-time PCR in adenoid
samples from asymptomatic children.J. Clin. Microbiol. 47 ,
2682 – 2683 (2009). doi:10.1128/JCM.00899-09;
pmid: 19494063
67. F. M. Liottiet al., Assessment of SARS-CoV-2 RNA Test Results
Among Patients Who Recovered From COVID-19 With Prior
Negative Results.JAMA Intern. Med. 181 , 702–704 (2021).
doi:10.1001/jamainternmed.2020.7570; pmid: 33180119
68. R. L. Tillettet al., Genomic evidence for reinfection with
SARS-CoV-2: A case study.Lancet Infect. Dis. 21 , 52–58 (2021).
doi:10.1016/S1473-3099(20)30764-7; pmid: 33058797
69. K. K.-W. Toet al., Coronavirus Disease 2019 (COVID-19)
Re-infection by a Phylogenetically Distinct Severe Acute
Respiratory Syndrome Coronavirus 2 Strain Confirmed by
Whole Genome Sequencing.Clin. Infect. Dis. 9 , 1664 (2020).
70. P. Simmonds, S. Williams, H. Harvala, Understanding the
outcomes of COVID-19–does the current model of an acute
respiratory infection really fit?J. Gen. Virol. 102 , 10.1099/
jgv.0.001545 (2020). doi:10.1099/jgv.0.001545; pmid: 33331810
71. M. Perry, simanneal: A Python Module for Simulated Annealing
Optimization;https://github.com/perrygeo/simanneal.
72. Stan Development Team, Stan Modeling Language Users Guide
and Reference Manual (version 2.25);https://mc-stan.org.
73. Y. Liuet al., Viral dynamics in mild and severe cases of
COVID-19.Lancet Infect. Dis. 20 , 656–657 (2020).
doi:10.1016/S1473-3099(20)30232-2; pmid: 32199493
74. K. K.-W. Toet al., Temporal profiles of viral load in posterior
oropharyngeal saliva samples and serum antibody responses
during infection by SARS-CoV-2: An observational cohort
study.Lancet Infect. Dis. 20 , 565–574 (2020). doi:10.1016/
S1473-3099(20)30196-1; pmid: 32213337
75. S. Greenland, Principles of multilevel modelling.Int. J. Epidemiol.
29 , 158–167 (2000). doi:10.1093/ije/29.1.158; pmid: 10750618
76. F. Kurthet al., Studying the pathophysiology of coronavirus
disease 2019: A protocol for the Berlin prospective COVID-19
patient cohort (Pa-COVID-19).Infection 48 , 619–626 (2020).
doi:10.1007/s15010-020-01464-x; pmid: 32535877
77. C. Thibeaultet al., Clinical and virological characteristics of
hospitalised COVID-19 patients in a German tertiary care
centre during the first wave of the SARS-CoV-2 pandemic:
A prospective observational study.Infection10.1007/s15010-
021-01594-w (2021). doi:10.1007/s15010-021-01594-w;
pmid: 33890243
78. P. Virtanenet al., SciPy 1.0: Fundamental algorithms for
scientific computing in Python.Nat. Methods 17 , 261– 272
(2020). doi:10.1038/s41592-019-0686-2; pmid: 32015543
79. W. McKinney, Data Structures for Statistical Computing in
Python. InProceedings of the 9th Python in Science Conference
(2010). doi:10.25080/majora-92bf1922-00a
80. S. Seabold, J. Perktold, Statsmodels: Econometric and
Statistical Modeling with Python. InProceedings of the
9th Python in Science Conference(2010). doi:10.25080/
majora-92bf1922-011
- J. D. Hunter, Matplotlib: A 2D Graphics Environment.Comput.
Sci. Eng. 9 , 90–95 (2007). doi:10.1109/MCSE.2007.55 - T. Oliphant,Guide to NumPy(CreateSpace, ed. 2, 2015).
- M. Parker, seaborn_sinaplot;https://github.com/mparker2/
seaborn_sinaplot. - M. Waskomet al., seaborn: v0.5.0 (2014); DOI: 10.5281/
zenodo.12710. - B. Langmead, S. L. Salzberg, Fast gapped-read alignment with
Bowtie 2.Nat. Methods 9 , 357–359 (2012). doi:10.1038/
nmeth.1923; pmid: 22388286 - P. Daneceket al., Twelve years of SAMtools and BCFtools.
Gigascience 10 , giab008 (2021). doi:10.1093/gigascience/
giab008; pmid: 33590861 - J. K. Bonfieldet al., HTSlib: C library for reading/writing
high-throughput sequencing data.Gigascience 10 ,
giab007 (2021). doi:10.1093/gigascience/giab007;
pmid: 33594436 - G. Dick,Genomic Approaches in Earth and Environmental
Sciences(Wiley, 2018). - N. D. Grubaughet al., An amplicon-based sequencing
framework for accurately measuring intrahost virus diversity
using PrimalSeq and iVar.Genome Biol. 20 , 8 (2019).
doi:10.1186/s13059-018-1618-7; pmid: 30621750 - K. Katoh, D. M. Standley, MAFFT multiple sequence alignment
software version 7: Improvements in performance and
usability.Mol. Biol. Evol. 30 , 772–780 (2013). doi:10.1093/
molbev/mst010; pmid: 23329690 - B. Goodrich, J. Gabry, I. Ali, S. Brilleman, rstanarm: Bayesian
applied regression modeling via Stan (2020);https://mc-stan.
org/rstanarm. - B. Carpenteret al., Stan: A Probabilistic Programming
Language.J. Stat. Softw. 76 , (2017). doi:10.18637/jss.v076.i01 - M. Dowle, A. Srinivasan, data.table: Extension of‘data.frame’
(2020). - H. Wickham,ggplot2: Elegant Graphics for Data Analysis
(Springer, 2016). - O. Tange, GNU Parallel 20201122 (‘Biden’) (2020);
http://www.gnu.org/software/parallel/. - H. B. Mann, D. R. Whitney, On a Test of Whether One of
Two Random Variables is Stochastically Larger than the
Other.Ann. Math. Stat. 18 , 50–60 (1947). doi:10.1214/aoms/
1177730491 - Additional statistical information and the R code and data to
reproduce the results, figures, and tables are available at
https://doi.org/10.5281/zenodo.4774226.
ACKNOWLEDGMENTS
Computation was performed on the HPC for Research/Clinic
cluster of the Berlin Institute of Health, supported by D. Beule,
M. Holtgrewe, and O. Stolpe. We thank U. Gieraths and
L. Meiners for careful commentary on the manuscript,
T. D. Best for compiling cell culture isolation data, the Charité–
Universitätsmedizin Pa-COVID-19 collaborative study group for
providing additional onset of symptoms data, and S. Kissler for
providing additional details regarding their NBA study. The
conditions allowing the work to be done with no need for consent
are given athttps://gesetze.berlin.de/bsbe/document/jlr-
KHGBE2011V4P25.Funding:Work at Charité–Universitätsmedizin
Institute of Virology is funded by European Commission via project
ReCoVer, German Federal Ministry of Education and Research
(Bundesministerium für Bildung und Forschung) through projects
DZIF (301-4-7-01.703) to C.D.; VARIPath (01KI2021) to V.M.C.;
PROVID (FKZ 01KI20160C) to C.D., V.M.C., and L.E.S.; and
NaFoUniMedCovid19 (NUM)–COVIM (FKZ 01KX2021) to C.D.,
V.M.C., and L.E.S. The Pa-COVID 19 Study is supported by grants
from the Berlin Institute of Health. This study was supported in
part by the German Ministry of Health (Konsiliarlabor für
Coronaviren and SeCoV) to C.D. and V.M.C. T.C.J. is in part
funded through NIAID-NIH CEIRS contract HHSN272201400008C.
Author contributions:T.C.J., G.B., B.M.: bioinformatic processing,
statistical analysis, interpretation of results, writing of original
draft and final text; T.V.: statistical analysis, interpretation of
results, writing of original draft and final text, next-generation
sequencing; J.S., J.B.-S., T.B., J.T., M.L.S.: sample preparation,
virus isolation and culturing, RT-PCR, next-generation sequencing;
L.E.S., F.K.: collection of symptom onset data; P.M., R.S., M.Z.,
J.H., A.K., A.S., A.E.: diagnostic work and collection of raw data;
V.M.C.: diagnostic data collection, viral load calibration, supervision
of laboratory work, interpretation of results; C.D.: project concept,
interpretation of results, writing of original draft and final text.
Competing interests:The authors declare that they have no
Joneset al.,Science 373 , eabi5273 (2021) 9 July 2021 12 of 13
RESEARCH | RESEARCH ARTICLE