0.001
10 –8
10 –7
10 –6
10 –5
10 –4
10 –3
10 –2
10 –1
100
0.01 0.1 1 10
Dp (mm)
Kelvin
effect,
(water
droplet)
Relaxation time
C
c at 10mm Hg
Diffusion coeff., D
(n
p =1
)
Pulse height(example)
Slip coeff., C
c
τg
at 10mm H
g
τg
1°C/cm
Vth
Average absolute value of Brownian
displacement in 1s,
∆X in air
20°C in air
1atm
10 mm Hg
Settling velocity, V
t
In air (
p=1g cm
–3)
1
10
10 –2
10 –1
100
101
102
100
1000
1
2
3
4
5
6
7
8
Slip coefficient, C
c
Pulse height (light scattering)
Increase in vapor pressure by Kelvin effect, p
/d
p
Settling velocity v
(cm/s), Diffusion coefficient D (cmt
2 /s),
Relaxation time
τg
(s), Electrical mobility B
(cme
2 V
–1
s
–1
),
Average absolute value of Brownian displacement in 1s
∆x
=
4D/
p
(cm),
Thermophoretic velocity v
th
(cm/s)
Vt =
( p – (^) f)gDpCc
18 m
18 m
(3.1)
(3.4)
(3.6)
(3.8)
Cc = 1 + 2.514 (^) Dλ
p
λ Dp
Dp λ
- 0.80 exp (–0.55 ) (3.2)
(3.3)
(3.5)
(3.7)
Cc=1+(2 / pDp) [6.32 + 2.01 exp (–0.1095pDp)] p in cm Hg, Dp in^ mm
∆x = 4Dt D = kTCc
τg =
pDpCc
Be =
np e Cc
Pd / P 8 = exp ( 4Mσ
RT lDp
)
=1g cmp
–3
Electrical mobility, B
e
3 pmDp
3 pmDp
ρ
ρ
ρ
ρ^2
2
ρ
ρ
8
p
FIGURE 3 Fundamental mechanical and dynamic properties of aerosol particles suspended in a gas.
AEROSOLS 19
C001_002_r03.indd 19C001_002_r03.indd 19 11/18/2005 10:09:10 AM11/18/2005 10:09:10 AM