Differentiation
156
P1^
5
The next example illustrates the use of the second derivative to identify the
nature of stationary points.
EXAMPLE 5.15 Given that y = 2 x^3 + 3 x^2 − 12 x
(i) find d
d
y
x
, and find the values of x for which d
d
y
x
= 0
(ii) find the value of d
d
2
2
y
x
at each stationary point and hence determine its nature
(iii) find the y values of each of the stationary points
(iv) sketch the curve given by y = 2 x^3 + 3 x^2 − 12 x.
SOLUTION
(i) d
d
y
x
= 6 x^2 + 6 x − 12
= 6(x^2 + x − 2)
= 6(x + 2)(x − 1)
d
d
y
x
= 0 when x = −2 or x = 1.
(ii) d
d
2
2
y
x
= 12 x + 6.
When x = −2, d
d
2
2
y
x
= 12 × (−2) + 6 = −18.
d
d
2
2
y
x
0 ⇒ a maximum.
When x = 1, d
d
2
2
y
x
= 6(2 × 1 + 1) = 18.
d
d
2
2
y
x
0 ⇒ a minimum.
(iii) When x = −2, y = 2(−2)^3 + 3(−2)^2 − 12(−2)
= 20
so (−2, 20) is a maximum point.
When x = 1, y = 2 + 3 − 12
= − 7
so (1, −7) is a minimum point.
0
P
+ –
d^2 y
dx^2
< 0
at P
Figure 5.26 Figure 5.27
0
Q
d^2 y
dx^2
> 0
at Q