Cambridge International AS and A Level Mathematics Pure Mathematics 1

(Michael S) #1
Differentiation

P1^


5


KEY POINTS
1   y = kxn ⇒ d
d

y
x
=knxn–1

y = c ⇒ d
d

y
x=^0

2  y = f(x) + g(x) ⇒ d
d

y
x
= f′(x) + g′(x).

3  Tangent and normal at (x 1 , y 1 )
Gradient of tangent, m 1 = value of d
d

y
x
when x = x 1.
Gradient of normal, m 2 = –^1
m 1

.

Equation of tangent is
y − y 1 = m 1 (x − x 1 ).
Equation of normal is
y − y 1 = m 2 (x − x 1 ).

4  At a stationary point, d
d

y
x

= 0.

The nature of a stationary point can be determined by looking at the sign of
the gradient just either side of it.

5  The nature of a stationary point can also be determined by considering the
sign of d
d

2
2

y
x

.

● If

d
d

2
2

y
x
< 0, the point is a maximum.

● If
d
d

2
2

y
x
> 0, the point is a minimum.

6  If

d
d

2
2

y
x
= 0, check the values of d
d

y
x
on either side of the point to determine
its nature.

7  Chain rule: d
d

d
d

d
d

y
x

y
u

u
x

=×.

Where k, n and c are
constants.
}

0
+ –
0

Maximum Minimum Stationary point of infection

0
+
+

+


  • 0






+
Free download pdf