Cambridge International AS and A Level Mathematics Pure Mathematics 1

(Michael S) #1

P1^


7
Exercise

(^) 7B
225
Method 2
When one side of the identity looks more complicated than the other side, you
can work with this side until you end up with the same as the simpler side.
ExAmPlE 7.4 Prove the identity 1 cos−sincθθθ−≡os^1 tanθ.
SOlUTION
The LHS of this identity is more complicated, so manipulate the LHS until you
end up with tan θ.
Write the LHS as a single fraction:
cos
sincos
cos( sin)
cos( sin)
θ
θθ
θθ
1 θθ


1 1

1

2
− −≡

−−


≡cosscos(+−−insin)

(^21)
1
θθ
θθ
≡ −+ −

1 1
1
sins^2 in
cos( sin)
θθ
θθ
≡ −


≡ −


sinsin
cos( sin)

sin( sin)
cos( sin

θθ
θθ

θθ
θθ

2
1

1

1 ))

sin
cos
tan



θ
θ
θasrequired

ExERCISE 7B Prove each of the following identities.
1  1 – cos^2 θ ≡ sin^2 θ
2  (1 – sin^2 θ)tan θ ≡ cos θ sin θ

3  12 1

2
sin^2

cos
θ sin

θ
θ
−≡

4  tan
cos

2
2
θ^11
θ
≡−

5  sincos
sincos

22
22

θθ (^312)
θθ


−+



6  1122 221
cossθθin cossθθin

+≡

7  tanθ+≡cossinsθθθ in^1 cosθ

(^8 1) +^1 sins+ 1 −^1 in ≡^22
θθ cosθ
9  Prove the identity^1
1
2
2



  • tan
    tan
    x
    x
    ≡ 1 – 2 sin^2 x.
    [Cambridge AS & A Level Mathematics 9709, Paper 1 Q3 June 2007]
    Since sin^2 θ + cos^2 θ ≡ 1,
    cos^2 θ ≡ 1 – sin^2 θ

Free download pdf