Answers
302
P1^
11 4.5 square units
12 (i) ddyx = 6 x − 6 x^2 − 4 x^3
(ii) 4 x + y − 4 = 0
(iv) 8.1 square units
13 (i) ddyx = 4 − 3 x^2 ; 8x + y − 16 = 0
(ii) (−4, 48)
(iii) 108 square units
14 1023 square units
15 (i) A: (1, 4); B: (3, 0)
(ii) 3 y = x + 4
(iii) 1712 square units
Exercise 6E (Page 203)
1 6 square units
2 623 square units
3 4 square units
4 823 square units
5 615 square units
6 20 square units
Activity 6.3 (Page 203)
(i) (a) 4(x − 2)^3
(b) 14(2x + 5)^6
(c) –
(– )
6
21 x^4
(d) –
4
18 x
(ii) (a) (x − 2)^4 + c
(b) 14 (x − 2)^4 + c
(c) 12 (2x + 5)^7 + c
(d) 2(2x + 5)^7 + c
(e) (^) (– 21 x–^1 ) 3 + c
(f) –
(– )
1
62 x 13
- c
(g) (^) (– 18 x) + c
(h) (^) –( 21 –) 8 x + c
Exercise 6F (Page 205)
1 (i) 15 (x + 5)^5 + c
(ii) 19 (x + 7)^9 + c
(iii) –
(–)
1
52 x^5 - c
(iv) 23 (x − 4)
(^32) - c
(v) 121 (3x − 1)^4 + c
(vi) 351 (5x − 2)^7
(vii) 14 (2x − 4)^6 + c
(viii) 16 (4x − 2)
3
(^2) + c
(ix) (^) 8–^4 x + c
(x) (^32) x– 1 + c
2 (i) (^513)
(ii) 60
(iii) 205
(iv) 336
(v) (^513)
(vi) (^523)
3 (i) 4
(ii) –4; the graph has rotational
symmetry about (2, 0).
4 (i) 5.2 square units
(ii) 1.6 square units
(iii) 6.8 square units
(iv) Because region B is below
the x axis, so the integral for
this part is negative.
5 (i) 4 square units
(ii) 223 square units
6 (i) 3 y + x = 29
(ii) y = 4 32 x−+ 1
7 (i) (8.5, 4.25)
(ii) y = 16 − 4 62 − x
Activity 6.4 (Page 206)
(i) (a) 21
(b) (^23)
(c) 0.9
(d) 0.99
(e) 0.9999
(ii) 1
●?^ (Page^ 207)
1
a;
1
0 x^2 x
∞
∫ d
does not exist since^10 is
undefined.
Exercise 6G (Page 208)
1 2
(^2 12)
3 2
4 – (^14)
5 –1
x
y
O
2
y =^3 x
x
y
2
O
–
y = x –
x
y
2
1
O
y =^4 x
x
y
1
–1
–2
O
y^3 x–2