Science - USA (2021-07-16)

(Antfer) #1
Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change,
C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach,
M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi,
Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy,
S. MacCracken, P. R. Mastrandrea, L. L. White, Eds. (Cambridge
Univ. Press, 2014), pp. 979–1337.


  1. E. K. Bessette-Kirton, J. A. Coe,Front. Earth Sci. 8 , 293 (2020).

  2. J. Knight, S. Harrison,Nat. Clim. Chang. 3 , 24–29 (2013).

  3. Mountain Research Initiative EDW Working Group,Nat. Clim.
    Chang. 5 , 424–430 (2015).

  4. T. P. Sabinet al., inAssessment of Climate Change over the
    Indian Region: A Report of the Ministry of Earth Sciences
    (MoES), Government of India, R. Krishnan, J. Sanjay,
    C. Gnanaseelan, M. Mujumdar, A. Kulkarni, S. Chakraborty,
    Eds. (Springer, 2020), pp. 207–222.

  5. M. F. Azamet al.,J. Glaciol. 64 , 61–74 (2018).

  6. J. M. Maurer, J. M. Schaefer, S. Rupper, A. Corley,Sci. Adv. 5 ,
    eaav7266 (2019).

  7. D. E. Sheanet al.,Front. Earth Sci. 7 , 363 (2020).

  8. R. Hugonnetet al.,Nature 592 , 726–731 (2021).

  9. S. Gruber,Cryosphere 6 , 221–233 (2012).

  10. S. K. Allenet al.,Curr. Sci. 111 , 550 (2016).

  11. J. Noetzli, S. Gruber,Cryosphere 3 , 85–99 (2009).

  12. B. K. Biskabornet al.,Nat. Commun. 10 , 264 (2019).

  13. J. Noetzliet al.,Bull. Am. Meteorol. Soc. 101 , S34–S36
    (2020).

  14. S. Gruber, W. Haeberli,J. Geophys. Res. Earth Surf. 112 ,
    (2007).

  15. N. P. Raoet al.,Science 372 , 247–247 (2021).

  16. I. Kelman, M. H. Glantz, inReducing Disaster: Early Warning
    Systems For Climate Change(Springer Netherlands, 2014),
    pp. 89–108.

  17. S. K. McBrideet al.,Int. J. Disaster Risk Reduct. 50 ,
    101713 – 101713 (2020).

  18. W. Pollock, J. Wartman,GeoHealth 4 , GH000287 (2020).

  19. SentinelHub; http://www.sentinel-hub.com.

  20. PlanetLabs, Education and Research—Satellite Imagery
    Solutions.Planet(2021); https://planet.com/markets/
    education-and-research.

  21. Maxar, Uttarakhand Flooding; http://www.maxar.com/open-data/
    uttarakhand-flooding.

  22. S. Bhushan, D. Shean, Chamoli Disaster Pre-event 2-m DEM
    Composite: September 2015. Zenodo (2021); doi:10.5281/
    zenodo.44554647

  23. D. Sheanet al., Chamoli Disaster Post-event 2-m DEM
    Composite (February 10-11, 2021) and Difference Ma p (v1.0).
    Zenodo (2021); doi:10.5281/zenodo.455869297

  24. M. Mergili, A. Emer, W. Schwanghart, D. H. Shugar, r.avaflow
    simulation package for the 2021 Chamoli landslide cascade.
    Zenodo (2021); doi:10.5281/zenodo.4751059


ACKNOWLEDGMENTS
We acknowledge all the individuals who shared videos, images,
and other“on-the-ground”observations in real time and soon
after the event. These eyewitness accounts greatly aided our
interpretations. This study was coordinated with the IACS and IPA
Standing Group on Glacier and Permafrost Hazards in Mountains
(www.gaphaz.org). PlanetLabs, Maxar, and CNES provided
prioritized satellite tasking and rapid data access, and for that,
we are grateful. We thank the NGA EnhancedView Program
Management Office for supporting Level-1B image access under
the NextView License and composite DEM release. Any use of
trade, firm, or product names is for descriptive purposes only does
not imply endorsement by the U.S. government. The views and
interpretations in this publication are those of the authors and are
not necessarily attributable to their organizations. We thank
three anonymous reviewers for their insightful comments, which
strengthened this paper. Last, this paper is dedicated to those
who lost their lives in the Chamoli disaster and those who remain
missing.Funding:This work was supported by Alexander von
Humboldt Foundation, Government of the Federal Republic of
Germany (A.M.), Centre National d’Études Spatiales internal
funding (E.B.), Centre National d’Études Spatiales, Programme
National de Télédétection Spatiale PNTS-2018-4 (S.G.), CIRES
Graduate Research Fellowship (M.J.), Department of Science and
Technology, Government of India (A.Ku. and K.S.), European Space
Agency CCI program and EarthExplorer10 4000123681/18/I-NB,
4000109873/14/I-NB, 4000127593/19/I-NS, 4000127656/19/
NL/FF/gp (A.Kä.), European Space Agency Glaciers CCI+
4000127593/19/I-NB (F.P.), Future Investigators in NASA Earth
and Space Science and Technology 80NSSC19K1338 (S.B.),
ICIMOD core funds (J.S.), Natural Sciences and Engineering


Research Council (NSERC) 04207-2020 (D.H.S.), NASA Cryosphere
80NSSC20K1442 (U.K.H. and J.S.K.), NASA High Mountain Asia
Team (HiMAT-1) 80NSSC19K0653 (U.K.H., J.S.K., and D.H.S.),
NASA High Mountain Asia Team (HiMAT-2) 80NSSC20K1594
(S.R.), NASA High Mountain Asia Team (HiMAT-2) 80NSSC20K1595
(D.E.S.), NASA Interdisciplinary Research in Earth Science
80NSSC18K0432 (U.K.H. and J.S.K.), Roshydromet R&D Plan,
Theme 6.3.2 AAAA-A20-120031990040-7 (M.D.), Swiss Agency for
Development and Cooperation (SDC) 7F-08954.01.03 (S.A., H.F.,
and C.H.), Swiss National Science Foundation 200020_179130
(J.F.), Swiss National Science Foundation, project“Process-based
modelling of global glacier changes (PROGGRES)”, Grant Nr.
200021_184634 (D.F.), and a Swiss Federal Excellence Postdoc
Award (A.S.).Author contributions:The main author list order is
preserved in each section. Writing, original draft: D.H.S., M.J.,
D.S., S.B., K.U., S.M., M.V.W.d.V., M.Me., A.E., E.B., J.L.C., J.J.C.,
S.A.D., H.F., S.G., U.K.H., C.H., A.Kä., J.S.K., J.L.K., P.L., D.P., S.R.,
M.E., D.F., and J.N.. Writing, review and editing: all authors.
Methodology, investigation, and Formal analysis—satellite-based
geomorphological mapping: D.H.S., W.S., J.L.C., J.J.C., M.D., S.A.D.,
U.K.H., C.H., A.Kä., S.J.C., F.P., and M.J.W.; flow modeling: A.S.,
M.Me., and U.K.H.; energy-balance modeling: A.Kä., J.S.K., and
J.L.K.; DEM production: D.S., S.B., C.D.B., E.B., and S.G.; climate,
weather, and geology analysis: M.J., D.S., M.Mc., R.B., S.A., H.F.,
U.K.H., J.S.K., S.G., S.R., A.P.D., J.F., M.K., S.L., S.M., J.N., U.M.,
A.M., I.R., and J.S.; social and economic impacts: K.U., S.M., S.A.D.,
J.S.K., M.F.A., and M.E.; video analysis: A.E. and F.P.; precursory
motion: M.V.W.d.V., S.G., A.Kä., and M.D.; seismology: P.L.
and M.J.; field mapping: M.F.A., A.Ku., I.R., and K.S. Data curation:
D.H.S., D.S., S.B., W.S., M.V.W.d.V., M.Me., C.D.B., M.Mc., E.B.,

S.G., J.L.K., P.L., S.R., M.J. Visualization: D.H.S., M.J., D.S., S.B.,
W.S., M.V.W.d.V., M.Me., A.E., C.D.B., E.B., S.G., A.Kä., J.L.K.,
P.L., and D.F. Project administration: D.H.S.Competing interests:
The authors declare that they have no competing interests.
Data and materials availability:We used publicly available data
sources whenever possible. The Sentinel-2 data are available
from ( 57 ). PlanetScope satellite image data are available through
Planet’s Education and Research Program ( 58 ). Pre- and post-
event very-high-resolution satellite images are available through
Maxar’s Open Data Program ( 59 ), with others available through the
NGA NextView License. Airbus/CNES (Pléiades) images were made
publicly available through the International Charter: Space and
Major Disasters. The derived DEM Composite data are available
from ( 60 , 61 ). ERA5 data are available from the Copernicus climate
Data Store. The r.avaflow model is available at http://www.avaflow.org.
The r.avaflow code used for the simulation, the start script, and
all of the input data are available at ( 62 ) along with a brief tutorial
on how to reproduce the results presented in the paper.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/373/6552/300/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S17
Tables S1 to S5
References ( 63 – 124 )

9 March 2021; accepted 27 May 2021
10.1126/science.abh4455

CHROMATIN

Chromatin landscape signals differentially dictate


the activities of mSWI/SNF family complexes


Nazar Mashtalir1,2†, Hai T. Dao^3 †, Akshay Sankar1,2, Hengyuan Liu^3 , Aaron J. Corin1,2,
John D. Bagert^3 , Eva J. Ge^3 , Andrew R. D’Avino1,2, Martin Filipovski1,2, Brittany C. Michel1,2,
Geoffrey P. Dann^3 , Tom W. Muir^3 *, Cigall Kadoch1,2*

Mammalian SWI/SNF (mSWI/SNF) adenosine triphosphate–dependent chromatin remodelers modulate
genomic architecture and gene expression and are frequently mutated in disease. However, the
specific chromatin features that govern their nucleosome binding and remodeling activities remain unknown.
We subjected endogenously purified mSWI/SNF complexes and their constituent assembly modules to a
diverse library of DNA-barcoded mononucleosomes, performing more than 25,000 binding and remodeling
measurements. Here, we define histone modification-, variant-, and mutation-specific effects, alone and in
combination, on mSWI/SNF activities and chromatin interactions. Further, we identify the combinatorial
contributions of complex module components, reader domains, and nucleosome engagement properties to
the localization of complexes to selectively permissive chromatin states. These findings uncover principles
that shape the genomic binding and activity of a major chromatin remodeler complex family.

C


hromatin regulatory factors play critical
roles in establishing and maintaining gene
expression patterns, and their dysregula-
tion is a common hallmark found in
human disease ( 1 ). Whether single pro-
teins or multimeric protein complexes with
diverse functional roles, the local activity of
these factors, dictated by structural features

controlling their genomic targeting, must be
tightly regulated to ensure fidelity in genomic
processes. While transcription factors bind to
well-defined stretches of DNA, the mecha-
nisms by which chromatin regulatory proteins
and protein complexes lacking DNA motif–
specific domains localize and exert their ac-
tivities genome-wide are multifactorial and
remain less well understood.
The megadalton-sized mammalian SWI/SNF
(mSWI/SNF, or BAF) family of adenosine tri-
phosphate (ATP)–dependent chromatin remod-
eling complexes contains multiple histone
recognition domains (readers) and generally
sequence-non-specific DNA binding domains
and thus has the potential for combinatorial

306 16 JULY 2021•VOL 373 ISSUE 6552 sciencemag.org SCIENCE


(^1) Department of Pediatric Oncology, Dana-Farber Cancer
Institute and Harvard Medical School, Boston, MA, USA.
(^2) Broad Institute of MIT and Harvard, Cambridge, MA, USA.
(^3) Department of Chemistry, Princeton University, Princeton,
NJ, USA.
*Corresponding author. Email: [email protected] (T.W.M.);
[email protected] (C.K.)
†These authors contributed equally to this work.
RESEARCH | RESEARCH ARTICLES

Free download pdf