Science - USA (2021-07-16)

(Antfer) #1

  1. R. H. Dettre, R. E. Johnson, inContact Angle, Wettability, and
    Adhesion(American Chemical Society, 1964), vol. 43,
    chap. 8, pp. 136–144.

  2. J. Genzer, K. Efimenko, Creating long-lived superhydrophobic
    polymer surfaces through mechanically assembled
    monolayers.Science 290 , 2130–2133 (2000). doi:10.1126/
    science.290.5499.2130; pmid: 11118144

  3. L. Gao, T. J. McCarthy, A perfectly hydrophobic surface
    (qA/qR= 180°/180°).J. Am. Chem. Soc. 128 , 9052– 9053
    (2006). doi:10.1021/ja062943n; pmid: 16834376

  4. M. Nosonovsky, Model for solid-liquid and solid-solid friction
    of rough surfaces with adhesion hysteresis.J. Chem. Phys.
    126 , 224701 (2007). doi:10.1063/1.2739525;
    pmid: 17581074

  5. A. Tutejaet al., Designing superoleophobic surfaces.
    Science 318 , 1618–1622 (2007). doi:10.1126/science.1148326;
    pmid: 18063796

  6. A. Tuteja, W. Choi, G. H. McKinley, R. E. Cohen, M. F. Rubner,
    Design parameters for superhydrophobicity and
    superoleophobicity.MRS Bull. 33 , 752–758 (2008).
    doi:10.1557/mrs2008.161

  7. B. Bhushan, Y. C. Jung, Natural and biomimetic artificial
    surfaces for superhydrophobicity, self-cleaning, low adhesion,
    and drag reduction.Prog. Mater. Sci. 56 ,1–108 (2011).
    doi:10.1016/j.pmatsci.2010.04.003

  8. R. Helbig, J. Nickerl, C. Neinhuis, C. Werner, Smart skin
    patterns protect springtails.PLOS ONE 6 , e25105 (2011).
    doi:10.1371/journal.pone.0025105; pmid: 21980383

  9. A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, R. E. Cohen,
    Robust omniphobic surfaces.Proc. Natl. Acad. Sci. U.S.A.
    105 , 18200–18205 (2008). doi:10.1073/pnas.0804872105;
    pmid: 19001270

  10. A. Marmur, From hygrophilic to superhygrophobic:
    Theoretical conditions for making high-contact-angle
    surfaces from low-contact-angle materials.Langmuir 24 ,
    7573 – 7579 (2008). doi:10.1021/la800304r; pmid: 18543997

  11. A. Ahujaet al., Nanonails: A simple geometrical approach
    to electrically tunable superlyophobic surfaces.Langmuir 24 ,
    9 – 14 (2008). doi:10.1021/la702327z; pmid: 17929955

  12. S. S. Chhatreet al., Scale dependence of omniphobic mesh
    surfaces.Langmuir 26 , 4027–4035 (2010). doi:10.1021/
    la903489r; pmid: 20000364

  13. T. L. Liu, C.-J. C. Kim, Repellent surfaces. Turning a surface
    superrepellent even to completely wetting liquids.Science
    346 , 1096–1100 (2014). doi:10.1126/science.1254787;
    pmid: 25430765

  14. A. K. Kota, G. Kwon, A. Tuteja, The design and applications of
    superomniphobic surfaces.NPG Asia Mater. 6 , e109–e109
    (2014). doi:10.1038/am.2014.34

  15. N. A. Patankar, Thermodynamics of trapping gases for
    underwater superhydrophobicity.Langmuir 32 , 7023– 7028
    (2016). doi:10.1021/acs.langmuir.6b01651; pmid: 27276525

  16. D. Quéré, Non-sticking drops.Rep. Prog. Phys. 68 ,
    2495 – 2532 (2005). doi:10.1088/0034-4885/68/11/R01

  17. T.-S. Wonget al., Bioinspired self-repairing slippery surfaces
    with pressure-stable omniphobicity.Nature 477 , 443– 447
    (2011). doi:10.1038/nature10447; pmid: 21938066

  18. A. Lafuma, D. Quéré, Slippery pre-suffused surfaces.EPL 96 ,
    56001 (2011) (Europhysics Letters). doi:10.1209/
    0295-5075/96/56001

  19. J. D. Smithet al., Droplet Mobility on Lubricant-Impregnated
    Surfaces.Soft Matter 9 , 1772–1780 (2013). doi:10.1039/
    C2SM27032C

  20. L. Zhang, Z. Guo, J. Sarma, X. Dai, Passive Removal of Highly
    Wetting Liquids and Ice on Quasi-Liquid Surfaces.ACS Appl.
    Mater. Interfaces 12 , 20084–20095 (2020). doi:10.1021/
    acsami.0c02014; pmid: 32255601

  21. L. Wang, T. J. McCarthy, Covalently attached liquids: Instant
    omniphobic surfaces with unprecedented repellency.Angew.
    Chem. 55 , 244–248 (2016). doi:10.1002/anie.201509385;
    pmid: 26568536

  22. J. S. Wexler, I. Jacobi, H. A. Stone, Shear-driven failure of
    liquid-infused surfaces.Phys. Rev. Lett. 114 , 168301 (2015).
    doi:10.1103/PhysRevLett.114.168301; pmid: 25955076

  23. H. J. Cho, D. J. Preston, Y. Zhu, E. N. Wang, Nanoengineered
    materials for liquid–vapour phase-change heat transfer.
    Nat. Rev. Mater. 2 ,1–17 (2016).

  24. D. Attingeret al., Surface engineering for phase change heat
    transfer: A review.MRS Energy Sustain. 1 , 4 (2014).
    doi:10.1557/mre.2014.9

  25. R. Sigsbee, G. Pound, Heterogeneous nucleation from the
    vapor.Adv. Colloid Interface Sci. 1 , 335–390 (1967).
    doi:10.1016/0001-8686(67)80007-1
    44. N. Fletcher, Size effect in heterogeneous nucleation.
    J. Chem. Phys. 29 , 572–576 (1958). doi:10.1063/1.1744540
    45. N. Miljkovicet al., Jumping-droplet-enhanced condensation
    on scalable superhydrophobic nanostructured surfaces.
    Nano Lett. 13 , 179–187 (2013). doi:10.1021/nl303835d;
    pmid: 23190055
    46. K. Khalilet al., Grafted Nanofilms Promote Dropwise
    Condensation of Low-Surface-Tension Fluids for High-
    Performance Heat Exchangers.Joule 3 , 1377–1388 (2019).
    doi:10.1016/j.joule.2019.04.009
    47. J. B. Boreyko, C. P. Collier, Delayed frost growth on
    jumping-drop superhydrophobic surfaces.ACS Nano 7 ,
    1618 – 1627 (2013). doi:10.1021/nn3055048; pmid: 23286736
    48. H. Chaet al., Dropwise condensation on solid hydrophilic
    surfaces.Sci. Adv. 6 , eaax0746 (2020). doi:10.1126/
    sciadv.aax0746; pmid: 31950076
    49. S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, K. K. Varanasi,
    Enhanced condensation on lubricant-impregnated
    nanotextured surfaces.ACS Nano 6 , 10122–10129 (2012).
    doi:10.1021/nn303867y; pmid: 23030619
    50. K.-C. Parket al., Condensation on slippery asymmetric
    bumps.Nature 531 , 78–82 (2016). doi:10.1038/nature16956;
    pmid: 26909575
    51. X. Daiet al., Hydrophilic directional slippery rough surfaces
    for water harvesting.Sci. Adv. 4 , eaaq0919 (2018).
    doi:10.1126/sciadv.aaq0919; pmid: 29670942
    52. G. Kwon, E. Post, A. Tuteja, Membranes with selective
    wettability for the separation of oil-water mixtures.
    MRS Commun. 5 , 475–494 (2015). doi:10.1557/mrc.2015.61
    53. L. Fenget al., A super-hydrophobic and super-oleophilic
    coating mesh film for the separation of oil and water.Angew.
    Chem. Int. Ed. 43 , 2012–2014 (2004). doi:10.1002/
    anie.200353381; pmid: 15065288
    54. R. E. Baier, Surface behaviour of biomaterials: The theta
    surface for biocompatibility.J. Mater. Sci. Mater. Med. 17 ,
    1057 – 1062 (2006). doi:10.1007/s10856-006-0444-8;
    pmid: 17122919
    55. R. E. Baier,“Surface properties influencing bacterial
    adhesion”inAdhesion in Biological Systems, R. S. Manly, Ed.
    (Academic Press, 1970), pp. 15–48.
    56. J. McGuire, K. R. Swartzel, The influence of solid surface
    energetics on macromolecular adsorption from milk.
    Food Process. Preserv. 13 , 145–160 (1989). doi:10.1111/
    j.1745-4549.1989.tb00097.x
    57. L. Makkonen, Ice adhesion—Theory, measurements and
    countermeasures.J. Adhes. Sci. Technol. 26 , 413– 445
    (2012). doi:10.1163/016942411X574583
    58. M. J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Design of
    anti-icing surfaces: Smooth, textured or slippery?Nat. Rev.
    Mater. 1 , 15003 (2016). doi:10.1038/natrevmats.2015.3
    59. K. Golovin, A. Dhyani, M. D. Thouless, A. Tuteja,
    Low-interfacial toughness materials for effective large-scale
    deicing.Science 364 , 371–375 (2019). doi:10.1126/
    science.aav1266; pmid: 31023920
    60. V. Hejazi, K. Sobolev, M. Nosonovsky, From
    superhydrophobicity to icephobicity: Forces and interaction
    analysis.Sci. Rep. 3 , 2194 (2013). doi:10.1038/srep02194;
    pmid: 23846773
    61. R. Douet al., Anti-icing coating with an aqueous lubricating
    layer.ACS Appl. Mater. Interfaces 6 , 6998–7003 (2014).
    doi:10.1021/am501252u; pmid: 24828839
    62. S. Zhanget al., Bioinspired Surfaces with Superwettability for
    Anti-Icing and Ice-Phobic Application: Concept, Mechanism,
    and Design.Small 13 , 1701867 (2017). doi:10.1002/
    smll.201701867; pmid: 29058767
    63. K. Golovinet al., Designing durable icephobic surfaces.
    Sci. Adv. 2 , e1501496 (2016). doi:10.1126/sciadv.1501496;
    pmid: 26998520
    64. G. Azimi, Y. Cui, A. Sabanska, K. K. Varanasi, Scale-resistant
    surfaces: Fundamental studies of the effect of surface
    energy on reducing scale formation.Appl. Surf. Sci. 313 ,
    591 – 599 (2014). doi:10.1016/j.apsusc.2014.06.028
    65. A. J. Scardino, R. de Nys, Mini review: Biomimetic models
    and bioinspired surfaces for fouling control.Biofouling 27 ,
    73 – 86 (2011). doi:10.1080/08927014.2010.536837;
    pmid: 21132577
    66. E. P. Ivanovaet al., Natural bactericidal surfaces: Mechanical
    rupture of Pseudomonas aeruginosa cells by cicada wings.
    Small 8 , 2489–2494 (2012). doi:10.1002/smll.201200528;
    pmid: 22674670
    67. J. F. Schumacheret al., Engineered antifouling
    microtopographies - effect of feature size, geometry, and
    roughness on settlement of zoospores of the green alga Ulva.


Biofouling 23 , 55–62 (2007). doi:10.1080/
08927010601136957 ; pmid: 17453729


  1. A. K. Epstein, T.-S. Wong, R. A. Belisle, E. M. Boggs,
    J. Aizenberg, Liquid-infused structured surfaces with
    exceptional anti-biofouling performance.Proc. Natl. Acad. Sci.
    U.S.A. 109 , 13182–13187 (2012). doi:10.1073/
    pnas.1201973109; pmid: 22847405

  2. L. Xiaoet al., Slippery liquid-infused porous surfaces showing
    marine antibiofouling properties.ACS Appl. Mater. Interfaces
    5 , 10074–10080 (2013). doi:10.1021/am402635p;
    pmid: 24067279

  3. S. Aminiet al., Preventing mussel adhesion using
    lubricant-infused materials.Science 357 , 668–673 (2017).
    doi:10.1126/science.aai8977; pmid: 28818939

  4. S. B. Subramanyam, G. Azimi, K. K. Varanasi, Designing
    Lubricant‐Impregnated Textured Surfaces to Resist Scale
    Formation.Adv. Mater. Interfaces 1 , 1300068 (2014).
    doi:10.1002/admi.201300068

  5. D. Chen, M. D. Gelenter, M. Hong, R. E. Cohen, G. H. McKinley,
    Icephobic surfaces induced by interfacial nonfrozen water.
    ACS Appl. Mater. Interfaces 9 , 4202–4214 (2017).
    doi:10.1021/acsami.6b13773; pmid: 28054770

  6. J. Chen, Z. Luo, Q. Fan, J. Lv, J. Wang, Anti-ice coating
    inspired by ice skating.Small 10 , 4693–4699 (2014).
    doi:10.1002/smll.201401557; pmid: 25145961

  7. C. Urata, G. J. Dunderdale, M. W. England, A. Hozumi,
    Self-lubricating organogels (SLUGs) with exceptional
    syneresis-induced anti-sticking properties against viscous
    emulsions and ices.J. Mater. Chem. A Mater. Energy Sustain.
    3 , 12626–12630 (2015). doi:10.1039/C5TA02690C

  8. Q. Liuet al., Durability of a lubricant-infused Electrospray
    Silicon Rubber surface as an anti-icing coating.Appl. Surf. Sci.
    346 , 68–76 (2015). doi:10.1016/j.apsusc.2015.02.051

  9. D. L. Beemer, W. Wang, A. K. Kota, Durable gels with ultra-low
    adhesion to ice.J. Mater. Chem. A Mater. Energy Sustain. 4 ,
    18253 – 18258 (2016). doi:10.1039/C6TA07262C

  10. S. B. Subramanyam, K. Rykaczewski, K. K. Varanasi, Ice
    adhesion on lubricant-impregnated textured surfaces.
    Langmuir 29 , 13414–13418 (2013). doi:10.1021/la402456c;
    pmid: 24070257

  11. K. Rykaczewski, S. Anand, S. B. Subramanyam, K. K. Varanasi,
    Mechanism of frost formation on lubricant-impregnated
    surfaces.Langmuir 29 , 5230–5238 (2013). doi:10.1021/
    la400801s; pmid: 23565857

  12. Z. Heet al., Bioinspired Multifunctional Anti-icing Hydrogel.
    Matter 2 , 723–734 (2020). doi:10.1016/j.matt.2019.12.017

  13. M. K. Chaudhury, K. H. Kim, Shear-induced adhesive failure of
    a rigid slab in contact with a thin confined film.Eur. Phys. J. E
    23 , 175–183 (2007). doi:10.1140/epje/i2007-10171-x;
    pmid: 17618406

  14. M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow,
    J. A. Callow, The influence of elastic modulus and thickness
    on the release of the soft-fouling green alga Ulva linza
    (syn. Enteromorpha linza) from poly(dimethylsiloxane)
    (PDMS) model networks.Biofouling 21 , 41–48 (2005).
    doi:10.1080/08927010500044377; pmid: 16019390

  15. J. Y. Chung, M. K. Chaudhury, Soft and Hard Adhesion.
    J. Adhes. 81 , 1119–1145 (2007). doi:10.1080/
    00218460500310887

  16. B. M. Newby, M. K. Chaudhury, H. R. Brown, Macroscopic
    evidence of the effect of interfacial slippage on adhesion.
    Science 269 , 1407–1409 (1995). doi:10.1126/
    science.269.5229.1407; pmid: 17731150

  17. Z. He, S. Xiao, H. Gao, J. He, Z. Zhang, Multiscale crack
    initiator promoted super-low ice adhesion surfaces.
    Soft Matter 13 , 6562–6568 (2017). doi:10.1039/C7SM01511A;
    pmid: 28895968

  18. Z. He, Y. Zhuo, J. He, Z. Zhang, Design and preparation
    of sandwich-like polydimethylsiloxane (PDMS) sponges with
    super-low ice adhesion.Soft Matter 14 , 4846–4851 (2018).
    doi:10.1039/C8SM00820E; pmid: 29845173

  19. P. Irajizadet al., Stress-localized durable icephobic surfaces.
    Mater. Horiz. 6 , 758–766 (2019). doi:10.1039/C8MH01291A

  20. K. Efimenko, J. Finlay, M. E. Callow, J. A. Callow, J. Genzer,
    Development and testing of hierarchically wrinkled coatings
    for marine antifouling.ACS Appl. Mater. Interfaces 1 ,
    1031 – 1040 (2009). doi:10.1021/am9000562;
    pmid: 20355888

  21. R. F. Brady Jr., I. L. Singer, Mechanical factors favoring
    release from fouling release coatings.Biofouling 15 , 73– 81
    (2000). doi:10.1080/08927010009386299; pmid: 22115293

  22. S. A. Kulinich, S. Farhadi, K. Nose, X. W. Du,
    Superhydrophobic surfaces: Are they really ice-repellent?


Dhyaniet al.,Science 373 , eaba5010 (2021) 16 July 2021 11 of 13


RESEARCH | REVIEW

Free download pdf