- R. H. Dettre, R. E. Johnson, inContact Angle, Wettability, and
Adhesion(American Chemical Society, 1964), vol. 43,
chap. 8, pp. 136–144. - J. Genzer, K. Efimenko, Creating long-lived superhydrophobic
polymer surfaces through mechanically assembled
monolayers.Science 290 , 2130–2133 (2000). doi:10.1126/
science.290.5499.2130; pmid: 11118144 - L. Gao, T. J. McCarthy, A perfectly hydrophobic surface
(qA/qR= 180°/180°).J. Am. Chem. Soc. 128 , 9052– 9053
(2006). doi:10.1021/ja062943n; pmid: 16834376 - M. Nosonovsky, Model for solid-liquid and solid-solid friction
of rough surfaces with adhesion hysteresis.J. Chem. Phys.
126 , 224701 (2007). doi:10.1063/1.2739525;
pmid: 17581074 - A. Tutejaet al., Designing superoleophobic surfaces.
Science 318 , 1618–1622 (2007). doi:10.1126/science.1148326;
pmid: 18063796 - A. Tuteja, W. Choi, G. H. McKinley, R. E. Cohen, M. F. Rubner,
Design parameters for superhydrophobicity and
superoleophobicity.MRS Bull. 33 , 752–758 (2008).
doi:10.1557/mrs2008.161 - B. Bhushan, Y. C. Jung, Natural and biomimetic artificial
surfaces for superhydrophobicity, self-cleaning, low adhesion,
and drag reduction.Prog. Mater. Sci. 56 ,1–108 (2011).
doi:10.1016/j.pmatsci.2010.04.003 - R. Helbig, J. Nickerl, C. Neinhuis, C. Werner, Smart skin
patterns protect springtails.PLOS ONE 6 , e25105 (2011).
doi:10.1371/journal.pone.0025105; pmid: 21980383 - A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, R. E. Cohen,
Robust omniphobic surfaces.Proc. Natl. Acad. Sci. U.S.A.
105 , 18200–18205 (2008). doi:10.1073/pnas.0804872105;
pmid: 19001270 - A. Marmur, From hygrophilic to superhygrophobic:
Theoretical conditions for making high-contact-angle
surfaces from low-contact-angle materials.Langmuir 24 ,
7573 – 7579 (2008). doi:10.1021/la800304r; pmid: 18543997 - A. Ahujaet al., Nanonails: A simple geometrical approach
to electrically tunable superlyophobic surfaces.Langmuir 24 ,
9 – 14 (2008). doi:10.1021/la702327z; pmid: 17929955 - S. S. Chhatreet al., Scale dependence of omniphobic mesh
surfaces.Langmuir 26 , 4027–4035 (2010). doi:10.1021/
la903489r; pmid: 20000364 - T. L. Liu, C.-J. C. Kim, Repellent surfaces. Turning a surface
superrepellent even to completely wetting liquids.Science
346 , 1096–1100 (2014). doi:10.1126/science.1254787;
pmid: 25430765 - A. K. Kota, G. Kwon, A. Tuteja, The design and applications of
superomniphobic surfaces.NPG Asia Mater. 6 , e109–e109
(2014). doi:10.1038/am.2014.34 - N. A. Patankar, Thermodynamics of trapping gases for
underwater superhydrophobicity.Langmuir 32 , 7023– 7028
(2016). doi:10.1021/acs.langmuir.6b01651; pmid: 27276525 - D. Quéré, Non-sticking drops.Rep. Prog. Phys. 68 ,
2495 – 2532 (2005). doi:10.1088/0034-4885/68/11/R01 - T.-S. Wonget al., Bioinspired self-repairing slippery surfaces
with pressure-stable omniphobicity.Nature 477 , 443– 447
(2011). doi:10.1038/nature10447; pmid: 21938066 - A. Lafuma, D. Quéré, Slippery pre-suffused surfaces.EPL 96 ,
56001 (2011) (Europhysics Letters). doi:10.1209/
0295-5075/96/56001 - J. D. Smithet al., Droplet Mobility on Lubricant-Impregnated
Surfaces.Soft Matter 9 , 1772–1780 (2013). doi:10.1039/
C2SM27032C - L. Zhang, Z. Guo, J. Sarma, X. Dai, Passive Removal of Highly
Wetting Liquids and Ice on Quasi-Liquid Surfaces.ACS Appl.
Mater. Interfaces 12 , 20084–20095 (2020). doi:10.1021/
acsami.0c02014; pmid: 32255601 - L. Wang, T. J. McCarthy, Covalently attached liquids: Instant
omniphobic surfaces with unprecedented repellency.Angew.
Chem. 55 , 244–248 (2016). doi:10.1002/anie.201509385;
pmid: 26568536 - J. S. Wexler, I. Jacobi, H. A. Stone, Shear-driven failure of
liquid-infused surfaces.Phys. Rev. Lett. 114 , 168301 (2015).
doi:10.1103/PhysRevLett.114.168301; pmid: 25955076 - H. J. Cho, D. J. Preston, Y. Zhu, E. N. Wang, Nanoengineered
materials for liquid–vapour phase-change heat transfer.
Nat. Rev. Mater. 2 ,1–17 (2016). - D. Attingeret al., Surface engineering for phase change heat
transfer: A review.MRS Energy Sustain. 1 , 4 (2014).
doi:10.1557/mre.2014.9 - R. Sigsbee, G. Pound, Heterogeneous nucleation from the
vapor.Adv. Colloid Interface Sci. 1 , 335–390 (1967).
doi:10.1016/0001-8686(67)80007-1
44. N. Fletcher, Size effect in heterogeneous nucleation.
J. Chem. Phys. 29 , 572–576 (1958). doi:10.1063/1.1744540
45. N. Miljkovicet al., Jumping-droplet-enhanced condensation
on scalable superhydrophobic nanostructured surfaces.
Nano Lett. 13 , 179–187 (2013). doi:10.1021/nl303835d;
pmid: 23190055
46. K. Khalilet al., Grafted Nanofilms Promote Dropwise
Condensation of Low-Surface-Tension Fluids for High-
Performance Heat Exchangers.Joule 3 , 1377–1388 (2019).
doi:10.1016/j.joule.2019.04.009
47. J. B. Boreyko, C. P. Collier, Delayed frost growth on
jumping-drop superhydrophobic surfaces.ACS Nano 7 ,
1618 – 1627 (2013). doi:10.1021/nn3055048; pmid: 23286736
48. H. Chaet al., Dropwise condensation on solid hydrophilic
surfaces.Sci. Adv. 6 , eaax0746 (2020). doi:10.1126/
sciadv.aax0746; pmid: 31950076
49. S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, K. K. Varanasi,
Enhanced condensation on lubricant-impregnated
nanotextured surfaces.ACS Nano 6 , 10122–10129 (2012).
doi:10.1021/nn303867y; pmid: 23030619
50. K.-C. Parket al., Condensation on slippery asymmetric
bumps.Nature 531 , 78–82 (2016). doi:10.1038/nature16956;
pmid: 26909575
51. X. Daiet al., Hydrophilic directional slippery rough surfaces
for water harvesting.Sci. Adv. 4 , eaaq0919 (2018).
doi:10.1126/sciadv.aaq0919; pmid: 29670942
52. G. Kwon, E. Post, A. Tuteja, Membranes with selective
wettability for the separation of oil-water mixtures.
MRS Commun. 5 , 475–494 (2015). doi:10.1557/mrc.2015.61
53. L. Fenget al., A super-hydrophobic and super-oleophilic
coating mesh film for the separation of oil and water.Angew.
Chem. Int. Ed. 43 , 2012–2014 (2004). doi:10.1002/
anie.200353381; pmid: 15065288
54. R. E. Baier, Surface behaviour of biomaterials: The theta
surface for biocompatibility.J. Mater. Sci. Mater. Med. 17 ,
1057 – 1062 (2006). doi:10.1007/s10856-006-0444-8;
pmid: 17122919
55. R. E. Baier,“Surface properties influencing bacterial
adhesion”inAdhesion in Biological Systems, R. S. Manly, Ed.
(Academic Press, 1970), pp. 15–48.
56. J. McGuire, K. R. Swartzel, The influence of solid surface
energetics on macromolecular adsorption from milk.
Food Process. Preserv. 13 , 145–160 (1989). doi:10.1111/
j.1745-4549.1989.tb00097.x
57. L. Makkonen, Ice adhesion—Theory, measurements and
countermeasures.J. Adhes. Sci. Technol. 26 , 413– 445
(2012). doi:10.1163/016942411X574583
58. M. J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Design of
anti-icing surfaces: Smooth, textured or slippery?Nat. Rev.
Mater. 1 , 15003 (2016). doi:10.1038/natrevmats.2015.3
59. K. Golovin, A. Dhyani, M. D. Thouless, A. Tuteja,
Low-interfacial toughness materials for effective large-scale
deicing.Science 364 , 371–375 (2019). doi:10.1126/
science.aav1266; pmid: 31023920
60. V. Hejazi, K. Sobolev, M. Nosonovsky, From
superhydrophobicity to icephobicity: Forces and interaction
analysis.Sci. Rep. 3 , 2194 (2013). doi:10.1038/srep02194;
pmid: 23846773
61. R. Douet al., Anti-icing coating with an aqueous lubricating
layer.ACS Appl. Mater. Interfaces 6 , 6998–7003 (2014).
doi:10.1021/am501252u; pmid: 24828839
62. S. Zhanget al., Bioinspired Surfaces with Superwettability for
Anti-Icing and Ice-Phobic Application: Concept, Mechanism,
and Design.Small 13 , 1701867 (2017). doi:10.1002/
smll.201701867; pmid: 29058767
63. K. Golovinet al., Designing durable icephobic surfaces.
Sci. Adv. 2 , e1501496 (2016). doi:10.1126/sciadv.1501496;
pmid: 26998520
64. G. Azimi, Y. Cui, A. Sabanska, K. K. Varanasi, Scale-resistant
surfaces: Fundamental studies of the effect of surface
energy on reducing scale formation.Appl. Surf. Sci. 313 ,
591 – 599 (2014). doi:10.1016/j.apsusc.2014.06.028
65. A. J. Scardino, R. de Nys, Mini review: Biomimetic models
and bioinspired surfaces for fouling control.Biofouling 27 ,
73 – 86 (2011). doi:10.1080/08927014.2010.536837;
pmid: 21132577
66. E. P. Ivanovaet al., Natural bactericidal surfaces: Mechanical
rupture of Pseudomonas aeruginosa cells by cicada wings.
Small 8 , 2489–2494 (2012). doi:10.1002/smll.201200528;
pmid: 22674670
67. J. F. Schumacheret al., Engineered antifouling
microtopographies - effect of feature size, geometry, and
roughness on settlement of zoospores of the green alga Ulva.
Biofouling 23 , 55–62 (2007). doi:10.1080/
08927010601136957 ; pmid: 17453729
- A. K. Epstein, T.-S. Wong, R. A. Belisle, E. M. Boggs,
J. Aizenberg, Liquid-infused structured surfaces with
exceptional anti-biofouling performance.Proc. Natl. Acad. Sci.
U.S.A. 109 , 13182–13187 (2012). doi:10.1073/
pnas.1201973109; pmid: 22847405 - L. Xiaoet al., Slippery liquid-infused porous surfaces showing
marine antibiofouling properties.ACS Appl. Mater. Interfaces
5 , 10074–10080 (2013). doi:10.1021/am402635p;
pmid: 24067279 - S. Aminiet al., Preventing mussel adhesion using
lubricant-infused materials.Science 357 , 668–673 (2017).
doi:10.1126/science.aai8977; pmid: 28818939 - S. B. Subramanyam, G. Azimi, K. K. Varanasi, Designing
Lubricant‐Impregnated Textured Surfaces to Resist Scale
Formation.Adv. Mater. Interfaces 1 , 1300068 (2014).
doi:10.1002/admi.201300068 - D. Chen, M. D. Gelenter, M. Hong, R. E. Cohen, G. H. McKinley,
Icephobic surfaces induced by interfacial nonfrozen water.
ACS Appl. Mater. Interfaces 9 , 4202–4214 (2017).
doi:10.1021/acsami.6b13773; pmid: 28054770 - J. Chen, Z. Luo, Q. Fan, J. Lv, J. Wang, Anti-ice coating
inspired by ice skating.Small 10 , 4693–4699 (2014).
doi:10.1002/smll.201401557; pmid: 25145961 - C. Urata, G. J. Dunderdale, M. W. England, A. Hozumi,
Self-lubricating organogels (SLUGs) with exceptional
syneresis-induced anti-sticking properties against viscous
emulsions and ices.J. Mater. Chem. A Mater. Energy Sustain.
3 , 12626–12630 (2015). doi:10.1039/C5TA02690C - Q. Liuet al., Durability of a lubricant-infused Electrospray
Silicon Rubber surface as an anti-icing coating.Appl. Surf. Sci.
346 , 68–76 (2015). doi:10.1016/j.apsusc.2015.02.051 - D. L. Beemer, W. Wang, A. K. Kota, Durable gels with ultra-low
adhesion to ice.J. Mater. Chem. A Mater. Energy Sustain. 4 ,
18253 – 18258 (2016). doi:10.1039/C6TA07262C - S. B. Subramanyam, K. Rykaczewski, K. K. Varanasi, Ice
adhesion on lubricant-impregnated textured surfaces.
Langmuir 29 , 13414–13418 (2013). doi:10.1021/la402456c;
pmid: 24070257 - K. Rykaczewski, S. Anand, S. B. Subramanyam, K. K. Varanasi,
Mechanism of frost formation on lubricant-impregnated
surfaces.Langmuir 29 , 5230–5238 (2013). doi:10.1021/
la400801s; pmid: 23565857 - Z. Heet al., Bioinspired Multifunctional Anti-icing Hydrogel.
Matter 2 , 723–734 (2020). doi:10.1016/j.matt.2019.12.017 - M. K. Chaudhury, K. H. Kim, Shear-induced adhesive failure of
a rigid slab in contact with a thin confined film.Eur. Phys. J. E
23 , 175–183 (2007). doi:10.1140/epje/i2007-10171-x;
pmid: 17618406 - M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow,
J. A. Callow, The influence of elastic modulus and thickness
on the release of the soft-fouling green alga Ulva linza
(syn. Enteromorpha linza) from poly(dimethylsiloxane)
(PDMS) model networks.Biofouling 21 , 41–48 (2005).
doi:10.1080/08927010500044377; pmid: 16019390 - J. Y. Chung, M. K. Chaudhury, Soft and Hard Adhesion.
J. Adhes. 81 , 1119–1145 (2007). doi:10.1080/
00218460500310887 - B. M. Newby, M. K. Chaudhury, H. R. Brown, Macroscopic
evidence of the effect of interfacial slippage on adhesion.
Science 269 , 1407–1409 (1995). doi:10.1126/
science.269.5229.1407; pmid: 17731150 - Z. He, S. Xiao, H. Gao, J. He, Z. Zhang, Multiscale crack
initiator promoted super-low ice adhesion surfaces.
Soft Matter 13 , 6562–6568 (2017). doi:10.1039/C7SM01511A;
pmid: 28895968 - Z. He, Y. Zhuo, J. He, Z. Zhang, Design and preparation
of sandwich-like polydimethylsiloxane (PDMS) sponges with
super-low ice adhesion.Soft Matter 14 , 4846–4851 (2018).
doi:10.1039/C8SM00820E; pmid: 29845173 - P. Irajizadet al., Stress-localized durable icephobic surfaces.
Mater. Horiz. 6 , 758–766 (2019). doi:10.1039/C8MH01291A - K. Efimenko, J. Finlay, M. E. Callow, J. A. Callow, J. Genzer,
Development and testing of hierarchically wrinkled coatings
for marine antifouling.ACS Appl. Mater. Interfaces 1 ,
1031 – 1040 (2009). doi:10.1021/am9000562;
pmid: 20355888 - R. F. Brady Jr., I. L. Singer, Mechanical factors favoring
release from fouling release coatings.Biofouling 15 , 73– 81
(2000). doi:10.1080/08927010009386299; pmid: 22115293 - S. A. Kulinich, S. Farhadi, K. Nose, X. W. Du,
Superhydrophobic surfaces: Are they really ice-repellent?
Dhyaniet al.,Science 373 , eaba5010 (2021) 16 July 2021 11 of 13
RESEARCH | REVIEW