Science - USA (2021-07-16)

(Antfer) #1
Langmuir 27 , 25–29 (2011). doi:10.1021/la104277q;
pmid: 21141839


  1. L. Zhuet al., Ice-phobic coatings based on silicon-oil-infused
    polydimethylsiloxane.ACS Appl. Mater. Interfaces 5 ,
    4053 – 4062 (2013). doi:10.1021/am400704z;
    pmid: 23642087

  2. A. Davis, Y. H. Yeong, A. Steele, I. S. Bayer, E. Loth,
    Superhydrophobic nanocomposite surface topography and
    ice adhesion.ACS Appl. Mater. Interfaces 6 , 9272– 9279
    (2014). doi:10.1021/am501640h; pmid: 24914617

  3. A. Work, Y. Lian, A critical review of the measurement of ice
    adhesion to solid substrates.Prog. Aerosp. Sci. 98 ,1– 26
    (2018). doi:10.1016/j.paerosci.2018.03.001

  4. D. Gebauer, A. Völkel, H. Cölfen, Stable prenucleation calcium
    carbonate clusters.Science 322 , 1819–1822 (2008).
    doi:10.1126/science.1164271; pmid: 19095936

  5. L. C. Jacobson, W. Hujo, V. Molinero, Amorphous precursors
    in the nucleation of clathrate hydrates.J. Am. Chem. Soc.
    132 , 11806–11811 (2010). doi:10.1021/ja1051445;
    pmid: 20669949

  6. Z. Liuet al., Ion-specific ice propagation behavior on
    polyelectrolyte brush surfaces.RSC Advances 7 , 840– 844
    (2017). doi:10.1039/C6RA24847K

  7. S. Junget al., Are superhydrophobic surfaces best for
    icephobicity?Langmuir 27 , 3059–3066 (2011). doi:10.1021/
    la104762g; pmid: 21319778

  8. A. Alizadehet al., Dynamics of ice nucleation on water
    repellent surfaces.Langmuir 28 , 3180–3186 (2012).
    doi:10.1021/la2045256; pmid: 22235939

  9. P. Guoet al., Icephobic/anti-icing properties of micro/
    nanostructured surfaces.Adv. Mater. 24 , 2642–2648 (2012).
    doi:10.1002/adma.201104412; pmid: 22488894

  10. Y. Shenet al., Anti-icing potential of superhydrophobic
    Ti6Al4V surfaces: Ice nucleation and growth.Langmuir 31 ,
    10799 – 10806 (2015). doi:10.1021/acs.langmuir.5b02946;
    pmid: 26367109

  11. G. Heydari, E. Thormann, M. Järn, E. Tyrode, P. M. Claesson,
    Hydrophobic surfaces: Topography effects on wetting by
    supercooled water and freezing delay.J. Phys. Chem. C 117 ,
    21752 – 21762 (2013). doi:10.1021/jp404396m

  12. P. Tourkine, M. Le Merrer, D. Quéré, Delayed freezing on
    water repellent materials.Langmuir 25 , 7214–7216 (2009).
    doi:10.1021/la900929u; pmid: 19522485

  13. Z. Heet al., Tuning ice nucleation with counterions on
    polyelectrolyte brush surfaces.Sci. Adv. 2 , e1600345 (2016).
    doi:10.1126/sciadv.1600345; pmid: 27386581

  14. K. Liuet al., Janus effect of antifreeze proteins on ice
    nucleation.Proc. Natl. Acad. Sci. U.S.A. 113 , 14739– 14744
    (2016). doi:10.1073/pnas.1614379114; pmid: 27930318

  15. A. P. Esser-Kahn, V. Trang, M. B. Francis, Incorporation of
    antifreeze proteins into polymer coatings using site-selective
    bioconjugation.J. Am. Chem. Soc. 132 , 13264–13269 (2010).
    doi:10.1021/ja103038p; pmid: 20825180

  16. P. Eberle, M. K. Tiwari, T. Maitra, D. Poulikakos, Rational
    nanostructuring of surfaces for extraordinary icephobicity.
    Nanoscale 6 , 4874–4881 (2014). doi:10.1039/C3NR06644D;
    pmid: 24667802

  17. H. R. Pruppacher, J. D. Klett, Microphysics of clouds and
    precipitation.Nature 284 , 88–88 (1980). doi:10.1038/
    284088b0

  18. M. Gavish, J. L. Wang, M. Eisenstein, M. Lahav, L. Leiserowitz,
    The role of crystal polarity in alpha-amino acid crystals
    for induced nucleation of ice.Science 256 , 815–818 (1992).
    doi:10.1126/science.1589763; pmid: 1589763

  19. D. Ehre, E. Lavert, M. Lahav, I. Lubomirsky, Water freezes
    differently on positively and negatively charged surfaces of
    pyroelectric materials.Science 327 , 672–675 (2010).
    doi:10.1126/science.1178085; pmid: 20133568

  20. A. Hudait, N. Odendahl, Y. Qiu, F. Paesani, V. Molinero,
    Ice-nucleating and antifreeze proteins recognize ice through
    a diversity of anchored clathrate and ice-like motifs.
    J. Am. Chem. Soc. 140 , 4905–4912 (2018). doi:10.1021/
    jacs.8b01246; pmid: 29564892

  21. G. Cheng, Z. Zhang, S. Chen, J. D. Bryers, S. Jiang, Inhibition
    of bacterial adhesion and biofilm formation on zwitterionic
    surfaces.Biomaterials 28 , 4192–4199 (2007). doi:10.1016/
    j.biomaterials.2007.05.041; pmid: 17604099

  22. B. Liet al., TrimethylamineN-oxide-derived zwitterionic
    polymers: A new class of ultralow fouling bioinspired
    materials.Sci. Adv. 5 , eaaw9562 (2019). doi:10.1126/
    sciadv.aaw9562; pmid: 31214655

  23. S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration:
    Principles and applications toward low-fouling/nonfouling


biomaterials.Polymer 51 , 5283–5293 (2010). doi:10.1016/
j.polymer.2010.08.022


  1. S. Chen, J. Zheng, L. Li, S. Jiang, Strong resistance of
    phosphorylcholine self-assembled monolayers to protein
    adsorption: Insights into nonfouling properties of zwitterionic
    materials.J. Am. Chem. Soc. 127 , 14473–14478 (2005).
    doi:10.1021/ja054169u; pmid: 16218643

  2. L. Cao, A. K. Jones, V. K. Sikka, J. Wu, D. Gao, Anti-icing
    superhydrophobic coatings.Langmuir 25 , 12444– 12448
    (2009). doi:10.1021/la902882b; pmid: 19799464

  3. Y. Yaoet al., Frost-free zone on macrotextured surfaces.
    Proc. Natl. Acad. Sci. U.S.A. 117 , 6323–6329 (2020).
    doi:10.1073/pnas.1915959117; pmid: 32156727

  4. S. F. Ahmadiet al., Passive antifrosting surfaces using
    microscopic ice patterns.ACS Appl. Mater. Interfaces 10 ,
    32874 – 32884 (2018). doi:10.1021/acsami.8b11285;
    pmid: 30221924

  5. R. Chatterjee, D. Beysens, S. Anand, Delaying Ice and Frost
    Formation Using Phase-Switching Liquids.Adv. Mater. 31 ,
    e1807812 (2019). doi:10.1002/adma.201807812;
    pmid: 30873685

  6. Y. Gwaket al., Creating anti-icing surfaces via the direct
    immobilization of antifreeze proteins on aluminum.Sci. Rep.
    5 , 12019 (2015). doi:10.1038/srep12019; pmid: 26153855

  7. M. P. Schultz, J. A. Bendick, E. R. Holm, W. M. Hertel,
    Economic impact of biofouling on a naval surface ship.
    Biofouling 27 , 87–98 (2011). doi:10.1080/
    08927014.2010.542809; pmid: 21161774

  8. A. Herz, M. R. Malayeri, H. Müller-Steinhagen, Fouling of
    roughened stainless steel surfaces during convective
    heat transfer to aqueous solutions.Energy Convers. Manage. 49 ,
    3381 – 3386 (2008). doi:10.1016/j.enconman.2007.09.034

  9. M. Bobanet al., Smooth, all-solid, low-hysteresis, omniphobic
    surfaces with enhanced mechanical durability.ACS Appl.
    Mater. Interfaces 10 , 11406–11413 (2018). doi:10.1021/
    acsami.8b00521; pmid: 29554432

  10. A. Y. Fadeev, T. J. McCarthy, Trialkylsilane monolayers
    covalently attached to silicon surfaces: Wettability studies
    indicating that molecular topography contributes to contact
    angle hysteresis.Langmuir 15 , 3759–3766 (1999).
    doi:10.1021/la981486o

  11. K. Golovin, M. Boban, J. M. Mabry, A. Tuteja, Designing
    self-healing superhydrophobic surfaces with exceptional
    mechanical durability.ACS Appl. Mater. Interfaces 9 ,
    11212 – 11223 (2017). doi:10.1021/acsami.6b15491;
    pmid: 28267319

  12. C. Peng, Z. Chen, M. K. Tiwari, All-organic superhydrophobic
    coatings with mechanochemical robustness and liquid
    impalement resistance.Nat. Mater. 17 , 355–360 (2018).
    doi:10.1038/s41563-018-0044-2; pmid: 29581573

  13. X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Candle soot as a
    template for a transparent robust superamphiphobic coating.
    Science 335 , 67–70 (2012). doi:10.1126/science.1207115;
    pmid: 22144464

  14. J. Songet al., Super-robust superhydrophobic concrete.
    J. Mater. Chem. A Mater. Energy Sustain. 5 , 14542– 14550
    (2017). doi:10.1039/C7TA03526H

  15. V. Kondrashov, J. Rühe, Microcones and nanograss: Toward
    mechanically robust superhydrophobic surfaces.Langmuir 30 ,
    4342 – 4350 (2014). doi:10.1021/la500395e; pmid: 24628022

  16. X. Tian, T. Verho, R. H. Ras, Moving superhydrophobic
    surfaces toward real-world applications.Science 352 ,
    142 – 143 (2016). doi:10.1126/science.aaf2073;
    pmid: 27124437

  17. J. Archard, W. Hirst, The wear of metals under unlubricated
    conditions.Proc. R. Soc. London Ser. A 236 , 397–410 (1956).
    doi:10.1098/rspa.1956.0144

  18. I. Hutchings, P. Shipway,Tribology: Friction and Wear of
    Engineering Materials(Butterworth-Heinemann, 2017).

  19. J. Zhouet al., Electroplating of non-fluorinated
    superhydrophobic Ni/WC/WS2 composite coatings with high
    abrasive resistance.Appl. Surf. Sci. 487 , 1329–1340 (2019).
    doi:10.1016/j.apsusc.2019.05.244

  20. W. Zenget al., Robust coating with superhydrophobic and
    self-cleaning properties in either air or oil based on natural
    zeolite.Surf. Coat. Tech. 309 , 1045–1051 (2017).
    doi:10.1016/j.surfcoat.2016.10.036

  21. D. Zhi, Y. Lu, S. Sathasivam, I. P. Parkin, X. Zhang,
    Large-scale fabrication of translucent and repairable
    superhydrophobic spray coatings with remarkable
    mechanical, chemical durability and UV resistance.J. Mater.
    Chem. A Mater. Energy Sustain. 5 , 10622–10631 (2017).
    doi:10.1039/C7TA02488F
    134. Q. F. Xu, B. Mondal, A. M. Lyons, Fabricating
    superhydrophobic polymer surfaces with excellent abrasion
    resistance by a simple lamination templating method.
    ACS Appl. Mater. Interfaces 3 , 3508–3514 (2011).
    doi:10.1021/am200741f; pmid: 21797228
    135. J. C. Marxet al., Polymer infused composite metal foam as a
    potential aircraft leading edge material.Appl. Surf. Sci. 505 ,
    144114 (2020). doi:10.1016/j.apsusc.2019.144114
    136. W. Xu, J. Song, J. Sun, Y. Lu, Z. Yu, Rapid fabrication of
    large-area, corrosion-resistant superhydrophobic Mg alloy
    surfaces.ACS Appl. Mater. Interfaces 3 , 4404–4414 (2011).
    doi:10.1021/am2010527; pmid: 22008385
    137. R. R. Matheson Jr.., 20th- to 21st-century technological
    challenges in soft coatings.Science 297 , 976–979 (2002).
    doi:10.1126/science.1075707; pmid: 12169725
    138. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or
    escape from contamination in biological surfaces.Planta 202 ,
    1 – 8 (1997). doi:10.1007/s004250050096
    139. L. Fenget al., Petal effect: A superhydrophobic state with
    high adhesive force.Langmuir 24 , 4114–4119 (2008).
    doi:10.1021/la703821h; pmid: 18312016
    140. H. Chenet al., Continuous directional water transport on the
    peristome surface of Nepenthes alata.Nature 532 , 85– 89
    (2016). doi:10.1038/nature17189; pmid: 27078568
    141. G.-T. Yunet al., Springtail-inspired superomniphobic surface
    with extreme pressure resistance.Sci. Adv. 4 , eaat4978
    (2018). doi:10.1126/sciadv.aat4978; pmid: 30151429
    142. D. F. Cheng, C. Urata, M. Yagihashi, A. Hozumi, A statically
    oleophilic but dynamically oleophobic smooth
    nonperfluorinated surface.Angew. Chem. Int. Ed. 51 ,
    2956 – 2959 (2012). doi:10.1002/anie.201108800;
    pmid: 22334446
    143. A. Y. Fadeev, T. J. McCarthy, A new route to covalently
    attached monolayers: Reaction of hydridosilanes with
    titanium and other metal surfaces.J. Am. Chem. Soc. 121 ,
    12184 – 12185 (1999). doi:10.1021/ja9931269
    144. A. Y. Fadeev, T. J. McCarthy, Self-assembly is not the only
    reaction possible between alkyltrichlorosilanes and surfaces:
    Monomolecular and oligomeric covalently attached layers
    of dichloro-and trichloroalkylsilanes on silicon.Langmuir 16 ,
    7268 – 7274 (2000). doi:10.1021/la000471z
    145. M. Liuet al., Supramolecular silicone coating capable of
    strong substrate bonding, readily damage healing, and easy
    oil sliding.Sci. Adv. 5 , eaaw5643 (2019). doi:10.1126/sciadv.
    aaw5643; pmid: 31700998
    146. J. Wanget al., Viscoelastic solid-repellent coatings for
    extreme water saving and global sanitation.Nat. Sustain. 2 ,
    1097 – 1105 (2019). doi:10.1038/s41893-019-0421-0
    147. D. Öner, T. J. McCarthy, Ultrahydrophobic Surfaces. Effects of
    Topography Length Scales on Wettability.Langmuir 16 ,
    7777 – 7782 (2000). doi:10.1021/la000598o
    148. H. Zhouet al., A waterborne coating system for preparing
    robust, self‐healing, superamphiphobic surfaces.
    Adv. Funct. Mater. 27 , 1604261 (2017). doi:10.1002/
    adfm.201604261
    149. A. K. Kota, Y. Li, J. M. Mabry, A. Tuteja, Hierarchically
    structured superoleophobic surfaces with ultralow contact
    angle hysteresis.Adv. Mater. 24 , 5838–5843 (2012).
    doi:10.1002/adma.201202554; pmid: 22930526
    150. J. Zhang, S. Seeger, Superoleophobic coatings with ultralow
    sliding angles based on silicone nanofilaments.Angew. Chem.
    Int. Ed. 50 , 6652–6656 (2011). doi:10.1002/anie.201101008;
    pmid: 21648031
    151. A. R. Bielinskiet al., Rational design of hyperbranched
    nanowire systems for tunable superomniphobic
    surfaces enabled by atomic layer deposition.ACS Nano 11 ,
    478 – 489 (2017). doi:10.1021/acsnano.6b06463;
    pmid: 28114759
    152. K. K. S. Lauet al., Superhydrophobic Carbon Nanotube
    Forests.Nano Lett. 3 , 1701–1705 (2003). doi:10.1021/
    nl034704t
    153. A. Hozumi, T. J. McCarthy, Ultralyophobic oxidized aluminum
    surfaces exhibiting negligible contact angle hysteresis.
    Langmuir 26 , 2567–2573 (2010). doi:10.1021/la9028518;
    pmid: 20030348
    154. Y.-C. Chuang, C.-K. Chu, S.-Y. Lin, L.-J. Chen, Evaporation of
    water droplets on soft patterned surfaces.Soft Matter 10 ,
    3394 – 3403 (2014). doi:10.1039/c3sm52719k;
    pmid: 24643481
    155. J. Ohet al., Exploring the role of habitat on the wettability
    of cicada wings.ACS Appl. Mater. Interfaces 9 ,
    27173 – 27184 (2017). doi:10.1021/acsami.7b07060;
    pmid: 28719187


Dhyaniet al.,Science 373 , eaba5010 (2021) 16 July 2021 12 of 13


RESEARCH | REVIEW

Free download pdf