- B. Leng, Z. Shao, G. de With, W. Ming, Superoleophobic
cotton textiles.Langmuir 25 , 2456–2460 (2009).
doi:10.1021/la8031144; pmid: 19199744 - H. Wanget al., Durable, self-healing superhydrophobic
and superoleophobic surfaces from fluorinated-decyl
polyhedral oligomeric silsesquioxane and hydrolyzed
fluorinated alkyl silane.Angew.Chem.Int.Ed. 50 ,
11433 – 11436 (2011). doi:10.1002/anie.201105069;
pmid: 21990122 - A. Steele, I. Bayer, E. Loth, Inherently superoleophobic
nanocomposite coatings by spray atomization.Nano Lett. 9 ,
501 – 505 (2009). doi:10.1021/nl8037272; pmid: 19099463 - B. Zhang Newby, M. K. Chaudhury, Effect of Interfacial
Slippage on Viscoelastic Adhesion.Langmuir 13 , 1805– 1809
(1997). doi:10.1021/la960962c - J. Liet al., Hydrophobic liquid-infused porous polymer
surfaces for antibacterial applications.ACS Appl. Mater.
Interfaces 5 , 6704–6711 (2013). doi:10.1021/am401532z;
pmid: 23777668 - Q. Zhao, Y. Liu, C. Wang, S. Wang, H. Müller-Steinhagen,
Effect of surface free energy on the adhesion of biofouling
and crystalline fouling.Chem. Eng. Sci. 60 , 4858– 4865
(2005). doi:10.1016/j.ces.2005.04.006 - D. Perera-Costa, J. M. Bruque, M. L. González-Martín,
A. C. Gómez-García, V. Vadillo-Rodríguez, Studying the
influence of surface topography on bacterial adhesion using
spatially organized microtopographic surface patterns.
Langmuir 30 , 4633–4641 (2014). doi:10.1021/la5001057;
pmid: 24697600 - L. Liu, B. Ercan, L. Sun, K. S. Ziemer, T. J. Webster,
Understanding the Role of Polymer Surface Nanoscale
Topography on Inhibiting Bacteria Adhesion and Growth.
ACS Biomater. Sci. Eng. 2 , 122–130 (2016). doi:10.1021/
acsbiomaterials.5b00431; pmid: 33418649 - Y. Liu, Q. Zhao, Influence of surface energy of modified
surfaces on bacterial adhesion.Biophys. Chem. 117 , 39– 45
(2005). doi:10.1016/j.bpc.2005.04.015; pmid: 15907363 - C. S. Gudipati, J. A. Finlay, J. A. Callow, M. E. Callow,
K. L. Wooley, The antifouling and fouling-release performance
of hyperbranched fluoropolymer (HBFP)-poly(ethylene
glycol) (PEG) composite coatings evaluated by adsorption of
biomacromolecules and the green fouling alga Ulva.
Langmuir 21 , 3044–3053 (2005). doi:10.1021/la048015o;
pmid: 15779983 - S. Krishnanet al., Comparison of the fouling release
properties of hydrophobic fluorinated and hydrophilic
PEGylated block copolymer surfaces: Attachment strength
of the diatom Navicula and the green alga Ulva.
Biomacromolecules 7 , 1449–1462 (2006). doi:10.1021/
bm0509826; pmid: 16677026
167. Z. Zhanget al., Polysulfobetaine-grafted surfaces as
environmentally benign ultralow fouling marine coatings.
Langmuir 25 , 13516–13521 (2009). doi:10.1021/la901957k;
pmid: 19689148
168. J. C. Yarbroughet al., Contact Angle Analysis, Surface
Dynamics, and Biofouling Characteristics of Cross-Linkable,
Random Perfluoropolyether-Based Graft Terpolymers.
Macromolecules 39 , 2521–2528 (2006). doi:10.1021/
ma0524777
169. E. Martinelliet al., Poly(dimethyl siloxane) (PDMS) network
blends of amphiphilic acrylic copolymers with poly(ethylene
glycol)-fluoroalkyl side chains for fouling-release coatings. II.
Laboratory assays and field immersion trials.Biofouling
28 , 571–582 (2012). doi:10.1080/08927014.2012.697897;
pmid: 22702904
170. E. Martinelliet al., Effects of surface-active block copolymers
with oxyethylene and fluoroalkyl side chains on the
antifouling performance of silicone-based films.Biofouling
32 , 81–93 (2016). doi:10.1080/08927014.2015.1131822;
pmid: 26769148
171. W. van Zoelenet al., Sequence of Hydrophobic and
Hydrophilic Residues in Amphiphilic Polymer Coatings
Affects Surface Structure and Marine Antifouling/Fouling
Release Properties.ACS Macro Lett. 3 , 364–368 (2014).
doi:10.1021/mz500090n
172. B. Eslamiet al., Stress-localized durable anti-biofouling
surfaces.Soft Matter 15 , 6014–6026 (2019). doi:10.1039/
C9SM00790C; pmid: 31309202
173. D. E. Wendt, G. L. Kowalke, J. Kim, I. L. Singer, Factors that
influence elastomeric coating performance: The effect
of coating thickness on basal plate morphology, growth and
critical removal stress of the barnacle Balanus amphitrite.
Biofouling 22 ,1–9 (2006). doi:10.1080/
08927010500499563 ; pmid: 16551556
174. K. Trubyet al., Evaluation of the performance enhancement
of silicone biofouling-release coatings by oil incorporation.
Biofouling 15 , 141–150 (2000). doi:10.1080/
08927010009386305 ; pmid: 22115299
175. G. W. Swain, M. P. Schultz, The testing and evaluation of
non-toxic antifouling coatings.Biofouling 10 , 187– 197
(1996). doi:10.1080/08927019609386279;
pmid: 22115111
176. A. Beigbederet al., Preparation and characterisation of
silicone-based coatings filled with carbon nanotubes and
natural sepiolite and their application as marine
fouling-release coatings.Biofouling 24 , 291–302 (2008).
doi:10.1080/08927010802162885; pmid: 18568667
177. I. Marabottiet al., Fluorinated/siloxane copolymer blends
for fouling release: Chemical characterisation and
biological evaluation with algae and barnacles.Biofouling
25 , 481–493 (2009). doi:10.1080/08927010902913187;
pmid: 19373571
- A. Masoudi, P. Irajizad, N. Farokhnia, V. Kashyap, H. Ghasemi,
Antiscaling Magnetic Slippery Surfaces.ACS Appl. Mater.
Interfaces 9 , 21025–21033 (2017). doi:10.1021/
acsami.7b05564; pmid: 28562001 - H. Zhaoet al., Extreme Antiscaling Performance of Slippery
Omniphobic Covalently Attached Liquids.ACS Appl. Mater.
Interfaces 12 , 12054–12067 (2020). doi:10.1021/
acsami.9b22145; pmid: 32045210 - W. Jianget al., Preparation and Antiscaling Application of
Superhydrophobic Anodized CuO Nanowire Surfaces.
Ind. Eng. Chem. Res. 54 , 6874–6883 (2015). doi:10.1021/
acs.iecr.5b00444 - T. V. J. Charpentieret al., Liquid infused porous surfaces for
mineral fouling mitigation.J. Colloid Interface Sci. 444 , 81– 86
(2015). doi:10.1016/j.jcis.2014.12.043; pmid: 25585291 - T. Bharathidasan, S. V. Kumar, M. Bobji, R. Chakradhar,
B. J. Basu, Effect of wettability and surface roughness on
ice-adhesion strength of hydrophilic, hydrophobic and
superhydrophobic surfaces.Appl. Surf. Sci. 314 , 241– 250
(2014). doi:10.1016/j.apsusc.2014.06.101 - H. Niemelä‐Anttonenet al., Icephobicity of slippery liquid
infused porous surfaces under multiple freeze–thaw and ice
accretion–detachment cycles.Adv. Mater. Interfaces 5 ,
1800828 (2018). doi:10.1002/admi.201800828 - K. Golovin, A. Tuteja, A predictive framework for the design
and fabrication of icephobic polymers.Sci. Adv. 3 ,
e1701617 (2017). doi:10.1126/sciadv.1701617;
pmid: 28948227 - C. Su, Y. Xu, F. Gong, F. Wang, C. Li, The abrasion resistance
of a superhydrophobic surface comprised of polyurethane
elastomer.Soft Matter 6 , 6068–6071 (2010). doi:10.1039/
c0sm00804d - Y. Tanget al., Fabrication of superhydrophobic polyurethane/
MoS2 nanocomposite coatings with wear-resistance.Colloids
Surf. A Physicochem. Eng. Asp. 459 , 261–266 (2014).
doi:10.1016/j.colsurfa.2014.07.018
ACKNOWLEDGMENTS
Funding:We thank P. Armistead, K. Wahl, and the Office of Naval
Research (ONR) for financial support under grant N00014-20-1-
2817.Author contributions:All authors compiled data and wrote
the manuscript.Competing interests:The authors declare no
competing interests.Data and materials availability:All data are
available in the main text or the supplementary materials.
Correspondence and requests for materials should be addressed
to A.T. ([email protected]).
10.1126/science.aba5010
Dhyaniet al.,Science 373 , eaba5010 (2021) 16 July 2021 13 of 13
RESEARCH | REVIEW