Science - USA (2021-07-16)

(Antfer) #1

  1. B. Leng, Z. Shao, G. de With, W. Ming, Superoleophobic
    cotton textiles.Langmuir 25 , 2456–2460 (2009).
    doi:10.1021/la8031144; pmid: 19199744

  2. H. Wanget al., Durable, self-healing superhydrophobic
    and superoleophobic surfaces from fluorinated-decyl
    polyhedral oligomeric silsesquioxane and hydrolyzed
    fluorinated alkyl silane.Angew.Chem.Int.Ed. 50 ,
    11433 – 11436 (2011). doi:10.1002/anie.201105069;
    pmid: 21990122

  3. A. Steele, I. Bayer, E. Loth, Inherently superoleophobic
    nanocomposite coatings by spray atomization.Nano Lett. 9 ,
    501 – 505 (2009). doi:10.1021/nl8037272; pmid: 19099463

  4. B. Zhang Newby, M. K. Chaudhury, Effect of Interfacial
    Slippage on Viscoelastic Adhesion.Langmuir 13 , 1805– 1809
    (1997). doi:10.1021/la960962c

  5. J. Liet al., Hydrophobic liquid-infused porous polymer
    surfaces for antibacterial applications.ACS Appl. Mater.
    Interfaces 5 , 6704–6711 (2013). doi:10.1021/am401532z;
    pmid: 23777668

  6. Q. Zhao, Y. Liu, C. Wang, S. Wang, H. Müller-Steinhagen,
    Effect of surface free energy on the adhesion of biofouling
    and crystalline fouling.Chem. Eng. Sci. 60 , 4858– 4865
    (2005). doi:10.1016/j.ces.2005.04.006

  7. D. Perera-Costa, J. M. Bruque, M. L. González-Martín,
    A. C. Gómez-García, V. Vadillo-Rodríguez, Studying the
    influence of surface topography on bacterial adhesion using
    spatially organized microtopographic surface patterns.
    Langmuir 30 , 4633–4641 (2014). doi:10.1021/la5001057;
    pmid: 24697600

  8. L. Liu, B. Ercan, L. Sun, K. S. Ziemer, T. J. Webster,
    Understanding the Role of Polymer Surface Nanoscale
    Topography on Inhibiting Bacteria Adhesion and Growth.
    ACS Biomater. Sci. Eng. 2 , 122–130 (2016). doi:10.1021/
    acsbiomaterials.5b00431; pmid: 33418649

  9. Y. Liu, Q. Zhao, Influence of surface energy of modified
    surfaces on bacterial adhesion.Biophys. Chem. 117 , 39– 45
    (2005). doi:10.1016/j.bpc.2005.04.015; pmid: 15907363

  10. C. S. Gudipati, J. A. Finlay, J. A. Callow, M. E. Callow,
    K. L. Wooley, The antifouling and fouling-release performance
    of hyperbranched fluoropolymer (HBFP)-poly(ethylene
    glycol) (PEG) composite coatings evaluated by adsorption of
    biomacromolecules and the green fouling alga Ulva.
    Langmuir 21 , 3044–3053 (2005). doi:10.1021/la048015o;
    pmid: 15779983

  11. S. Krishnanet al., Comparison of the fouling release
    properties of hydrophobic fluorinated and hydrophilic
    PEGylated block copolymer surfaces: Attachment strength
    of the diatom Navicula and the green alga Ulva.
    Biomacromolecules 7 , 1449–1462 (2006). doi:10.1021/
    bm0509826; pmid: 16677026
    167. Z. Zhanget al., Polysulfobetaine-grafted surfaces as
    environmentally benign ultralow fouling marine coatings.
    Langmuir 25 , 13516–13521 (2009). doi:10.1021/la901957k;
    pmid: 19689148
    168. J. C. Yarbroughet al., Contact Angle Analysis, Surface
    Dynamics, and Biofouling Characteristics of Cross-Linkable,
    Random Perfluoropolyether-Based Graft Terpolymers.
    Macromolecules 39 , 2521–2528 (2006). doi:10.1021/
    ma0524777
    169. E. Martinelliet al., Poly(dimethyl siloxane) (PDMS) network
    blends of amphiphilic acrylic copolymers with poly(ethylene
    glycol)-fluoroalkyl side chains for fouling-release coatings. II.
    Laboratory assays and field immersion trials.Biofouling
    28 , 571–582 (2012). doi:10.1080/08927014.2012.697897;
    pmid: 22702904
    170. E. Martinelliet al., Effects of surface-active block copolymers
    with oxyethylene and fluoroalkyl side chains on the
    antifouling performance of silicone-based films.Biofouling
    32 , 81–93 (2016). doi:10.1080/08927014.2015.1131822;
    pmid: 26769148
    171. W. van Zoelenet al., Sequence of Hydrophobic and
    Hydrophilic Residues in Amphiphilic Polymer Coatings
    Affects Surface Structure and Marine Antifouling/Fouling
    Release Properties.ACS Macro Lett. 3 , 364–368 (2014).
    doi:10.1021/mz500090n
    172. B. Eslamiet al., Stress-localized durable anti-biofouling
    surfaces.Soft Matter 15 , 6014–6026 (2019). doi:10.1039/
    C9SM00790C; pmid: 31309202
    173. D. E. Wendt, G. L. Kowalke, J. Kim, I. L. Singer, Factors that
    influence elastomeric coating performance: The effect
    of coating thickness on basal plate morphology, growth and
    critical removal stress of the barnacle Balanus amphitrite.
    Biofouling 22 ,1–9 (2006). doi:10.1080/
    08927010500499563 ; pmid: 16551556
    174. K. Trubyet al., Evaluation of the performance enhancement
    of silicone biofouling-release coatings by oil incorporation.
    Biofouling 15 , 141–150 (2000). doi:10.1080/
    08927010009386305 ; pmid: 22115299
    175. G. W. Swain, M. P. Schultz, The testing and evaluation of
    non-toxic antifouling coatings.Biofouling 10 , 187– 197
    (1996). doi:10.1080/08927019609386279;
    pmid: 22115111
    176. A. Beigbederet al., Preparation and characterisation of
    silicone-based coatings filled with carbon nanotubes and
    natural sepiolite and their application as marine
    fouling-release coatings.Biofouling 24 , 291–302 (2008).
    doi:10.1080/08927010802162885; pmid: 18568667
    177. I. Marabottiet al., Fluorinated/siloxane copolymer blends
    for fouling release: Chemical characterisation and
    biological evaluation with algae and barnacles.Biofouling


25 , 481–493 (2009). doi:10.1080/08927010902913187;
pmid: 19373571


  1. A. Masoudi, P. Irajizad, N. Farokhnia, V. Kashyap, H. Ghasemi,
    Antiscaling Magnetic Slippery Surfaces.ACS Appl. Mater.
    Interfaces 9 , 21025–21033 (2017). doi:10.1021/
    acsami.7b05564; pmid: 28562001

  2. H. Zhaoet al., Extreme Antiscaling Performance of Slippery
    Omniphobic Covalently Attached Liquids.ACS Appl. Mater.
    Interfaces 12 , 12054–12067 (2020). doi:10.1021/
    acsami.9b22145; pmid: 32045210

  3. W. Jianget al., Preparation and Antiscaling Application of
    Superhydrophobic Anodized CuO Nanowire Surfaces.
    Ind. Eng. Chem. Res. 54 , 6874–6883 (2015). doi:10.1021/
    acs.iecr.5b00444

  4. T. V. J. Charpentieret al., Liquid infused porous surfaces for
    mineral fouling mitigation.J. Colloid Interface Sci. 444 , 81– 86
    (2015). doi:10.1016/j.jcis.2014.12.043; pmid: 25585291

  5. T. Bharathidasan, S. V. Kumar, M. Bobji, R. Chakradhar,
    B. J. Basu, Effect of wettability and surface roughness on
    ice-adhesion strength of hydrophilic, hydrophobic and
    superhydrophobic surfaces.Appl. Surf. Sci. 314 , 241– 250
    (2014). doi:10.1016/j.apsusc.2014.06.101

  6. H. Niemelä‐Anttonenet al., Icephobicity of slippery liquid
    infused porous surfaces under multiple freeze–thaw and ice
    accretion–detachment cycles.Adv. Mater. Interfaces 5 ,
    1800828 (2018). doi:10.1002/admi.201800828

  7. K. Golovin, A. Tuteja, A predictive framework for the design
    and fabrication of icephobic polymers.Sci. Adv. 3 ,
    e1701617 (2017). doi:10.1126/sciadv.1701617;
    pmid: 28948227

  8. C. Su, Y. Xu, F. Gong, F. Wang, C. Li, The abrasion resistance
    of a superhydrophobic surface comprised of polyurethane
    elastomer.Soft Matter 6 , 6068–6071 (2010). doi:10.1039/
    c0sm00804d

  9. Y. Tanget al., Fabrication of superhydrophobic polyurethane/
    MoS2 nanocomposite coatings with wear-resistance.Colloids
    Surf. A Physicochem. Eng. Asp. 459 , 261–266 (2014).
    doi:10.1016/j.colsurfa.2014.07.018


ACKNOWLEDGMENTS
Funding:We thank P. Armistead, K. Wahl, and the Office of Naval
Research (ONR) for financial support under grant N00014-20-1-
2817.Author contributions:All authors compiled data and wrote
the manuscript.Competing interests:The authors declare no
competing interests.Data and materials availability:All data are
available in the main text or the supplementary materials.
Correspondence and requests for materials should be addressed
to A.T. ([email protected]).

10.1126/science.aba5010

Dhyaniet al.,Science 373 , eaba5010 (2021) 16 July 2021 13 of 13


RESEARCH | REVIEW

Free download pdf