Science - USA (2021-07-16)

(Antfer) #1

  1. S. Crotty, Follicular helper CD4 T cells (TFH).Annu. Rev.
    Immunol. 29 , 621–663 (2011). doi:10.1146/annurev-immunol-
    031210-101400; pmid: 21314428

  2. C. G. Vinuesa, M. A. Linterman, D. Yu, I. C. MacLennan,
    Follicular helper T cells.Annu. Rev. Immunol. 34 , 335– 368
    (2016). doi:10.1146/annurev-immunol-041015-055605;
    pmid: 26907215

  3. S. Z. Josefowicz, L. F. Lu, A. Y. Rudensky, Regulatory T cells:
    Mechanisms of differentiation and function.Annu. Rev.
    Immunol. 30 , 531–564 (2012). doi:10.1146/annurev.
    immunol.25.022106.141623; pmid: 22224781

  4. M. A. Lintermanet al., Foxp3+follicular regulatory T cells
    control the germinal center response.Nat. Med. 17 , 975– 982
    (2011). doi:10.1038/nm.2425; pmid: 21785433

  5. I. Wollenberget al., Regulation of the germinal center reaction
    by Foxp3+follicular regulatory T cells.J. Immunol. 187 ,
    4553 – 4560 (2011). doi:10.4049/jimmunol.1101328;
    pmid: 21984700

  6. Y. Chunget al., Follicular regulatory T cells expressing Foxp3
    and Bcl-6 suppress germinal center reactions.Nat. Med. 17 ,
    983 – 988 (2011). doi:10.1038/nm.2426; pmid: 21785430

  7. P. T. Sage, A. H. Sharpe, T follicular regulatory cells in the
    regulation of B cell responses.Trends Immunol. 36 , 410– 418
    (2015). doi:10.1016/j.it.2015.05.005; pmid: 26091728

  8. V. R. Fonseca, F. Ribeiro, L. Graca, T follicular regulatory (Tfr)
    cells: Dissecting the complexity of Tfr-cell compartments.
    Immunol. Rev. 288 , 112–127 (2019). doi:10.1111/imr.12739;
    pmid: 30874344

  9. P. Gonzalez-Figueroaet al., Follicular regulatory T cells
    produce neuritin to regulate B cells.Cell 184 , 1775–1789.e19
    (2021). doi:10.1016/j.cell.2021.02.027; pmid: 33711260

  10. T. Kornet al., Myelin-specific regulatory T cells accumulate
    in the CNS but fail to control autoimmune inflammation.
    Nat. Med. 13 , 423–431 (2007). doi:10.1038/nm1564;
    pmid: 17384649

  11. Z. Shulmanet al., T follicular helper cell dynamics in germinal
    centers.Science 341 , 673–677 (2013). doi:10.1126/
    science.1241680; pmid: 23887872

  12. Y. Y. Wan, R. A. Flavell, Identifying Foxp3-expressing
    suppressor T cells with a bicistronic reporter.Proc. Natl. Acad.
    Sci. U.S.A. 102 , 5126–5131 (2005). doi:10.1073/
    pnas.0501701102; pmid: 15795373

  13. D. J. Firl, S. E. Degn, T. Padera, M. C. Carroll, Capturing change
    in clonal composition amongst single mouse germinal centers.
    eLife 7 , e33051 (2018). doi:10.7554/eLife.33051; pmid: 30066671

  14. Z. L. Benetet al., CCL3 promotes germinal center B cells
    sampling by follicular regulatory T cells in murine lymph nodes.
    Front. Immunol. 9 , 2044 (2018). doi:10.3389/
    fimmu.2018.02044; pmid: 30271404

  15. T. Okadaet al., Antigen-engaged B cells undergo chemotaxis
    toward the T zone and form motile conjugates with helper
    T cells.PLOS Biol. 3 , e150 (2005). doi:10.1371/journal.
    pbio.0030150; pmid: 15857154

  16. T. A. Schwickertet al., A dynamic T cell-limited checkpoint
    regulates affinity-dependent B cell entry into the germinal
    center.J. Exp. Med. 208 , 1243–1252 (2011). doi:10.1084/
    jem.20102477; pmid: 21576382

  17. D. Liuet al., T-B-cell entanglement and ICOSL-driven feed-
    forward regulation of germinal centre reaction.Nature 517 ,
    214 – 218 (2015). doi:10.1038/nature13803; pmid: 25317561

  18. Z. Shulmanet al., Dynamic signaling by T follicular helper cells
    during germinal center B cell selection.Science 345 ,
    1058 – 1062 (2014). doi:10.1126/science.1257861;
    pmid: 25170154

  19. C. D. Allen, T. Okada, H. L. Tang, J. G. Cyster, Imaging of
    germinal center selection events during affinity maturation.
    Science 315 , 528–531 (2007). doi:10.1126/science.1136736;
    pmid: 17185562

  20. R. L. Lindquistet al., Visualizing dendritic cell networks in vivo.
    Nat. Immunol. 5 , 1243–1250 (2004). doi:10.1038/ni1139;
    pmid: 15543150

  21. M. Aloulouet al., Follicular regulatory T cells can be specific
    for the immunizing antigen and derive from naive T cells.
    Nat. Commun. 7 , 10579 (2016). doi:10.1038/ncomms10579;
    pmid: 26818004

  22. J. B. Winget al., A distinct subpopulation of CD25–T-follicular
    regulatory cells localizes in the germinal centers.Proc. Natl.
    Acad. Sci. U.S.A. 114 , E6400–E6409 (2017). doi:10.1073/
    pnas.1705551114; pmid: 28698369

  23. M. Feuereret al., Genomic definition of multiple ex vivo
    regulatory T cell subphenotypes.Proc. Natl. Acad. Sci. U.S.A.
    107 , 5919–5924 (2010). doi:10.1073/pnas.1002006107;
    pmid: 20231436
    33. T. Chtanovaet al., T follicular helper cells express a distinctive
    transcriptional profile, reflecting their role as non-Th1/Th2
    effector cells that provide help for B cells.J. Immunol. 173 ,
    68 – 78 (2004). doi:10.4049/jimmunol.173.1.68;
    pmid: 15210760
    34. Y. J. Liuet al., Mechanism of antigen-driven selection in
    germinal centres.Nature 342 , 929–931 (1989). doi:10.1038/
    342929a0; pmid: 2594086
    35. A. R. Maceiraset al., T follicular helper and T follicular
    regulatory cells have different TCR specificity.Nat. Commun. 8 ,
    15067 (2017). doi:10.1038/ncomms15067; pmid: 28429709
    36. S. Houet al., FoxP3 and Ezh2 regulate Tfr cell suppressive
    function and transcriptional program.J. Exp. Med. 216 ,
    605 – 620 (2019). doi:10.1084/jem.20181134; pmid: 30705058
    37. A. R. Albrightet al., TGFbsignaling in germinal center B cells
    promotes the transition from light zone to dark zone.J. Exp.
    Med. 216 , 2531–2545 (2019). doi:10.1084/jem.20181868;
    pmid: 31506281
    38. T. E. Mandels, R. P. Phippsi, A. Abbot, J. G. Tew, The follicular
    dendritic cell: Long term antigen retention during immunity.
    Immunol. Rev. 53 , 29–59 (1980). doi:10.1111/j.1600-
    065X.1980.tb01039.x; pmid: 6162778
    39. K. Kretschmeret al., Inducing and expanding regulatory T cell
    populations by foreign antigen.Nat. Immunol. 6 , 1219– 1227
    (2005). doi:10.1038/ni1265; pmid: 16244650
    40. J. B. Wing, W. Ise, T. Kurosaki, S. Sakaguchi, Regulatory T cells
    control antigen-specific expansion of TFHcell number and
    humoral immune responses via the coreceptor CTLA-4.
    Immunity 41 , 1013–1025 (2014). doi:10.1016/j.
    immuni.2014.12.006; pmid: 25526312
    41. D. Zotoset al., IL-21 regulates germinal center B cell
    differentiation and proliferation through a B cell-intrinsic
    mechanism.J. Exp. Med. 207 , 365–378 (2010). doi:10.1084/
    jem.20091777; pmid: 20142430
    42. M. A. Lintermanet al., IL-21 acts directly on B cells to regulate
    Bcl-6 expression and germinal center responses.J. Exp. Med.
    207 , 353–363 (2010). doi:10.1084/jem.20091738;
    pmid: 20142429
    43. S. Hanet al., Cellular interaction in germinal centers. Roles of
    CD40 ligand and B7-2 in established germinal centers.
    J. Immunol. 155 , 556–567 (1995). pmid: 7541819
    44. A. K. Hadjantonakis, S. Macmaster, A. Nagy, Embryonic stem
    cells and mice expressing different GFP variants for multiple
    non-invasive reporter usage within a single animal.BMC
    Biotechnol. 2 , 11 (2002). doi:10.1186/1472-6750-2-11;
    pmid: 12079497
    45. K. Vinterstenet al., Mouse in red: Red fluorescent protein
    expression in mouse ES cells, embryos, and adult animals.
    Genesis 40 , 241–246 (2004). doi:10.1002/gene.20095;
    pmid: 15593332
    46. A. J. Wolfet al., Initiation of the adaptive immune response
    toMycobacterium tuberculosisdepends on antigen
    production in the local lymph node, not the lungs.J. Exp.
    Med. 205 , 105–115 (2008). doi:10.1084/jem.20071367;
    pmid: 18158321
    47. T. A. Shih, M. Roederer, M. C. Nussenzweig, Role of antigen
    receptor affinity in T cell-independent antibody responses
    in vivo.Nat. Immunol. 3 , 399–406 (2002). doi:10.1038/ni776;
    pmid: 11896394
    48. M. J. Barnden, J. Allison, W. R. Heath, F. R. Carbone, Defective
    TCR expression in transgenic mice constructed using cDNA-
    baseda- andb-chain genes under the control of heterologous
    regulatory elements.Immunol. Cell Biol. 76 , 34–40 (1998).
    doi:10.1046/j.1440-1711.1998.00709.x; pmid: 9553774
    49. H. A. Zariwalaet al., A Cre-dependent GCaMP3 reporter
    mouse for neuronal imaging in vivo.J. Neurosci. 32 ,
    3131 – 3141 (2012). doi:10.1523/JNEUROSCI.4469-11.2012;
    pmid: 22378886
    50. E. Bettelliet al., Reciprocal developmental pathways for the
    generation of pathogenic effector TH17 and regulatory T cells.
    Nature 441 , 235–238 (2006). doi:10.1038/nature04753;
    pmid: 16648838
    51. T. Chinenet al., An essential role for the IL-2 receptor in Treg
    cell function.Nat. Immunol. 17 , 1322–1333 (2016).
    doi:10.1038/ni.3540; pmid: 27595233
    52. R. Roozendaalet al., Conduits mediate transport of low-
    molecular-weight antigen to lymph node follicles.Immunity 30 ,
    264 – 276 (2009). doi:10.1016/j.immuni.2008.12.014;
    pmid: 19185517
    53. E. F. J. Meijeret al., Murine chronic lymph node window for
    longitudinal intravital lymph node imaging.Nat. Protoc. 12 ,
    1513 – 1520 (2017). doi:10.1038/nprot.2017.045;
    pmid: 28683064
    54. J. T. Jacobsen, G. D. Victora, Microanatomical labeling of
    germinal center structures for flow cytometry using
    photoactivation.Methods Mol. Biol. 1623 , 51–58 (2017).
    doi:10.1007/978-1-4939-7095-7_4; pmid: 28589346
    55. J. M. Taset al., Visualizing antibody affinity maturation in
    germinal centers.Science 351 , 1048–1054 (2016).
    doi:10.1126/science.aad3439; pmid: 26912368
    56. P. Dashet al., Paired analysis of TCRaand TCRbchains at the
    single-cell level in mice.J. Clin. Invest. 121 , 288–295 (2011).
    doi:10.1172/JCI44752; pmid: 21135507
    57. A. Han, J. Glanville, L. Hansmann, M. M. Davis, Linking T-cell
    receptor sequence to functional phenotype at the single-cell
    level.Nat. Biotechnol. 32 , 684–692 (2014). doi:10.1038/
    nbt.2938; pmid: 24952902
    58. A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown,
    J. D. Neufeld, PANDAseq: Paired-end assembler for illumina
    sequences.BMC Bioinformatics 13 , 31 (2012). doi:10.1186/
    1471-2105-13-31; pmid: 22333067
    59. M. P. Lefrancet al., IMGT, the international ImMunoGeneTics
    information system.Nucleic Acids Res. 37 , D1006–D1012
    (2009). doi:10.1093/nar/gkn838; pmid: 18978023
    60. J. J. Trombettaet al., Preparation of single-cell RNA-Seq
    libraries for next generation sequencing.Curr. Protoc. Mol. Biol.
    107 , 4.22.1–4.22.17 (2014). doi:10.1002/0471142727.
    mb0422s107; pmid: 24984854
    61. A. Dobinet al., STAR: Ultrafast universal RNA-seq aligner.
    Bioinformatics 29 , 15–21 (2013). doi:10.1093/bioinformatics/
    bts635; pmid: 23104886
    62. B. Li, C. N. Dewey, RSEM: Accurate transcript quantification
    from RNA-Seq data with or without a reference genome.
    BMC Bioinformatics 12 , 323 (2011). doi:10.1186/1471-2105-12-
    323 ; pmid: 21816040
    63. T. Stuartet al., Comprehensive integration of single-cell data.
    Cell 177 , 1888–1902.e21 (2019). doi:10.1016/
    j.cell.2019.05.031; pmid: 31178118
    64. M. J. T. Stubbingtonet al., T cell fate and clonality inference
    from single-cell transcriptomes.Nat. Methods 13 , 329– 332
    (2016). doi:10.1038/nmeth.3800; pmid: 26950746
    65. B. J. Haaset al., De novo transcript sequence reconstruction
    from RNA-seq using the Trinity platform for reference
    generation and analysis.Nat. Protoc. 8 , 1494–1512 (2013).
    doi:10.1038/nprot.2013.084; pmid: 23845962


ACKNOWLEDGMENTS
We thank D. Mucida (Rockefeller University) and C. Vinuesa
(Australian National University) for critical reading of our
manuscript; M. Carroll and D. Firl (Harvard University Medical
School) for help with implantation and imaging of iLN lymph node
windows; K. Gordon and K. Chhosphel for cell sorting; P. Strogies,
D. Gross, and J. Petrillo at Rockefeller University’s Precision
Instrumentation Technologies Facility and V. Sherman at
Rockefeller University’s High Energy Physics Instrument Shop for
adapting and producing parts for longitudinal iLN imaging; the
Rockefeller University Genomics Center for RNA sequencing and
Comparative Biosciences Center for animal housing; and
Rockefeller University employees for their continuous assistance.
Funding:This work was supported by NIH grants R21AI138020,
R01AI119006, and R01AI139117; Human Frontier of Science
Program Research Grant RPG003/2015; and a March of Dimes
Basil O’Connor Starting Scholar Award to G.D.V. This work was
also supported by NIH grants DP2GM119419 and RM1HG006193 to
A.K.S. and NCI Cancer Center Support Grant P30 CA008748
and NIH grant R37AI034206 to A.Y.R. Work in the Victora
laboratory is further supported by an NIH Director’s Pioneer Award
(DP1AI144248) and by the Robertson Foundation. J.T.J. was
supported by Fripro mobility grant no. 239757, jointly funded by
the Research Council of Norway and the Co-funding of Regional,
National, and International Programmes (COFUND)–Marie Curie
Actions under the EU Seventh Framework Programme (FP7)
and South-Eastern Norway Regional Health Authority grant no.


  1. W.H. was supported by an Irvington-Cancer Research
    Institute Postdoctoral Fellowship. A.Y.R. is a Howard Hughes
    Medical Institute (HHMI) Investigator. A.K.S. was supported by a
    Sloan Fellowship in Chemistry. A.K.S. and G.D.V. are Pew-Stewart
    Scholars. G.D.V. is a Burroughs-Wellcome Investigator in the
    Pathogenesis of Infectious Disease, a Searle Scholar, and a
    MacArthur Fellow.Author contributions:J.T.J. and G.D.V.
    designed and supervised all experiments and wrote the text with
    input from all authors. J.T.J. performed most experiments with
    help from S.S., A.G., Z.L., S.J.A., L.M., A.M.B., and A.S. W.H. and
    A.Y.R. designed and characterized theRosa26Foxp3mouse and
    contributed to all experiments involving this strain. T.B.R.C.
    designed and executed all computational analyses, with essential


Jacobsenet al.,Science 373 , eabe5146 (2021) 16 July 2021 12 of 13


RESEARCH | RESEARCH ARTICLE

Free download pdf