untitled

(Barré) #1

Solution : Given that, tanA 1.
So, opposite side of the A = 1, adjacent side = 1


hypotenuse = 12  12 2


Therefore, sinA=
2


1
, cosA=
2

1
.

Now left hand side = 2 sinAcosA= 2
2


1
˜
2

1
˜ = 2
2

1
˜ = 1

= right hand side.
= 2 sinAcosA 1 is a true statement.


Activity :


  1. If ‘C is a right angle of a right angled triangle ABC, AB=29 cm, BC= 21
    cm and ‘ABC θ, find the value of cos^2 θsin^2 θ.


Example 4. Prove that, tanθcotθ secθ,cosecθ.
Proof :
Left hand side = tanθcotθ


=
θ


θ
θ

θ
sin

cos
cos

sin


=
θ θ


θ θ
sin cos

sin^2 cos^2
˜



=
sinθ cosθ


1
˜

[sin^2 θcos^2 θ 1 ]

=
θ cosθ


1
sin

1
˜

=cosecθ˜secθ
=secθ˜cosecθ=
= R.H.S. (proved)


Example 5. Prove that, 1
1 cosec


1
1 sin

1
^2 θ ^2 θ^

Proof : L.H.S. =


(^2) θ 1 cosec (^2) θ
1
1 sin
1





θ
θ
2
2
sin
1
1
1
1 sin
1





θ
θ
θ^2
2
(^21) sin
sin
1 sin
1




Free download pdf