Solution : Given that, tanA 1.
So, opposite side of the A = 1, adjacent side = 1
hypotenuse = 12 12 2
Therefore, sinA=
2
1
, cosA=
2
1
.
Now left hand side = 2 sinAcosA= 2
2
1
2
1
= 2
2
1
= 1
= right hand side.
= 2 sinAcosA 1 is a true statement.
Activity :
- If C is a right angle of a right angled triangle ABC, AB=29 cm, BC= 21
cm and ABC θ, find the value of cos^2 θsin^2 θ.
Example 4. Prove that, tanθcotθ secθ,cosecθ.
Proof :
Left hand side = tanθcotθ
=
θ
θ
θ
θ
sin
cos
cos
sin
=
θ θ
θ θ
sin cos
sin^2 cos^2
=
sinθ cosθ
1
[sin^2 θcos^2 θ 1 ]
=
θ cosθ
1
sin
1
=cosecθsecθ
=secθcosecθ=
= R.H.S. (proved)
Example 5. Prove that, 1
1 cosec
1
1 sin
1
^2 θ ^2 θ^
Proof : L.H.S. =
(^2) θ 1 cosec (^2) θ
1
1 sin
1
θ
θ
2
2
sin
1
1
1
1 sin
1
θ
θ
θ^2
2
(^21) sin
sin
1 sin
1