untitled

(Barré) #1
0DWK,;;)RUPD


  1. θ


θ
θ θ
1 sin

1 sin
(tan sec )^2



 18. cotA.tanB.
cotB tanA

cotA tanB





  1. secA tanA.
    1 sinA


1 sinA






  1. cotA cosecA.
    secA 1


secA 1






  1. If cosAsinA 2 cosA, prove that cosAsinA 2 sinA

  2. If
    3


1
tanA , find the value of
cosecA secA

cosecA secA
2 2

2 2



.


  1. If
    3


4
cosecAcotA , what is the value of cosecAcotA?


  1. If
    a


b
cotA , find the value of
asinA bcosA

asinA bcosA



.

9 ⋅6 Trigonometric ratios of the angles 30 $, 45 $ and 60 $
We have learnt to draw the angles having the measurement of 30 $, 45 $and 60 $
geometrically. The actual values of the trigonometric ratios for all these angles can
be determined geometrically.
Trigonometric ratios of the angles 30 $ and 60 $
Let, ‘XOZ 30 $ and Pis a point on the side OZ.
DrawPMAOX and extend PM upto Q
such that MQ PM. Add O,Q and extend upto Z.


Now, between 'POM and 'QOM,PM QM,
OM is the common side and included ‘PMO
= included ‘QMO 90 $
? 'POM#'QOM


Therefore, ‘QOM ‘POM 30 $


and ‘OQM ‘OPM 60 $

Again, ‘POQ ‘POM‘QOM 30 $ 30 $ 60 $


? 'OPQ is an equilateral triangle.


If OP 2 a,PM PQ OP a
2


1
2

1
[since 'POQ is an equilateral triangle]

From right-angled 'OPM, we get,


OM OP^2 PM^2 4 a^2 a^2 3 a.
We find the trigonometric ratios :


?
2


1
2

sin 30
a

a
OP

$ PM
,
2

3
2

3
cos 30
a

a
OP

$ OM


Free download pdf