0DWK,;;)RUPD
- θ
θ
θ θ
1 sin
1 sin
(tan sec )^2
18. cotA.tanB.
cotB tanA
cotA tanB
- secA tanA.
1 sinA
1 sinA
- cotA cosecA.
secA 1
secA 1
- If cosAsinA 2 cosA, prove that cosAsinA 2 sinA
- If
3
1
tanA , find the value of
cosecA secA
cosecA secA
2 2
2 2
.
- If
3
4
cosecAcotA , what is the value of cosecAcotA?
- If
a
b
cotA , find the value of
asinA bcosA
asinA bcosA
.
9 ⋅6 Trigonometric ratios of the angles 30 $, 45 $ and 60 $
We have learnt to draw the angles having the measurement of 30 $, 45 $and 60 $
geometrically. The actual values of the trigonometric ratios for all these angles can
be determined geometrically.
Trigonometric ratios of the angles 30 $ and 60 $
Let, XOZ 30 $ and Pis a point on the side OZ.
DrawPMAOX and extend PM upto Q
such that MQ PM. Add O,Q and extend upto Z.
Now, between 'POM and 'QOM,PM QM,
OM is the common side and included PMO
= included QMO 90 $
? 'POM#'QOM
Therefore, QOM POM 30 $
and OQM OPM 60 $
Again, POQ POMQOM 30 $ 30 $ 60 $
? 'OPQ is an equilateral triangle.
If OP 2 a,PM PQ OP a
2
1
2
1
[since 'POQ is an equilateral triangle]
From right-angled 'OPM, we get,
OM OP^2 PM^2 4 a^2 a^2 3 a.
We find the trigonometric ratios :
?
2
1
2
sin 30
a
a
OP
$ PM
,
2
3
2
3
cos 30
a
a
OP
$ OM