untitled

(Barré) #1


3

1
3

tan 30
a

a
OM

$ PM
.

2
2
cosec 30
a

a
PM

$ OP
,
3

2
3

2
sec 30
a

a
OM

$ OP

3
3
cot 30
a

a
PM

$ OM
.

Similarly,


2

3
2

3
sin 60
a

a
OP

$ OM
,

2

1
2

cos 60
a

a
OP

$ PM
, 3
3
tan 60
a

a
PM

$ OM

3

2
3

2
cosec 60
a

a
OM

$ OP
,

2
2
sec 60
a

a
PM

$ OP
,
3

1
3

cot 60
a

a
OM

$ PM
.

Trigonometric ratio of the angle 45 $
Let, ‘XOZ 45 $ and P is a point on OZ.
DrawPMAOX. In right angled triangle
'OPM,‘POM 45 $
So,‘OPM 45 $
Therefore, PM OM=a (suppose)


Now, OP^2 OM^2 PM^2 =
2
a +
2
a =2
2
a


or,OP 2 a
From the definition of trigonometric ratios, we get


2

1
2

sin 45
a

a
OP

$ PM
,
2

1
2

cos 45
a

a
OP

$ OM
,tan 45 1
a

a
OM

$ PM

2
sin 45

1
cosec 45
q

$ , 2
cos 45

1
sec 45
q

$ , 1
tan 45

1
cot 45
q

$

9 ⋅7 Trigonometric ratios of complementary angles
We know, if the sum of two acute angles is 90 $, one of
them is called complementary angle to the other. For
example, 30 $and 60 $; 15 $and 75 $are complementary
angles to each other.
In general, the angles θ and ( 90 $θ) are
complementary angles to each other.



Free download pdf