3
1
3
tan 30
a
a
OM
$ PM
.
2
2
cosec 30
a
a
PM
$ OP
,
3
2
3
2
sec 30
a
a
OM
$ OP
3
3
cot 30
a
a
PM
$ OM
.
Similarly,
2
3
2
3
sin 60
a
a
OP
$ OM
,
2
1
2
cos 60
a
a
OP
$ PM
, 3
3
tan 60
a
a
PM
$ OM
3
2
3
2
cosec 60
a
a
OM
$ OP
,
2
2
sec 60
a
a
PM
$ OP
,
3
1
3
cot 60
a
a
OM
$ PM
.
Trigonometric ratio of the angle 45 $
Let, XOZ 45 $ and P is a point on OZ.
DrawPMAOX. In right angled triangle
'OPM,POM 45 $
So,OPM 45 $
Therefore, PM OM=a (suppose)
Now, OP^2 OM^2 PM^2 =
2
a +
2
a =2
2
a
or,OP 2 a
From the definition of trigonometric ratios, we get
2
1
2
sin 45
a
a
OP
$ PM
,
2
1
2
cos 45
a
a
OP
$ OM
,tan 45 1
a
a
OM
$ PM
2
sin 45
1
cosec 45
q
$ , 2
cos 45
1
sec 45
q
$ , 1
tan 45
1
cot 45
q
$
9 ⋅7 Trigonometric ratios of complementary angles
We know, if the sum of two acute angles is 90 $, one of
them is called complementary angle to the other. For
example, 30 $and 60 $; 15 $and 75 $are complementary
angles to each other.
In general, the angles θ and ( 90 $θ) are
complementary angles to each other.