31
3tan 30
aa
OM$ PM
.2
2
cosec 30
aa
PM$ OP
,
32
32
sec 30
aa
OM$ OP3
3
cot 30
aa
PM$ OM
.Similarly,
23
23
sin 60
aa
OP$ OM
,21
2cos 60
aa
OP$ PM
, 3
3
tan 60
aa
PM$ OM32
32
cosec 60
aa
OM$ OP
,2
2
sec 60
aa
PM$ OP
,
31
3cot 60
aa
OM$ PM
.Trigonometric ratio of the angle 45 $
Let, XOZ 45 $ and P is a point on OZ.
DrawPMAOX. In right angled triangle
'OPM,POM 45 $
So,OPM 45 $
Therefore, PM OM=a (suppose)
Now, OP^2 OM^2 PM^2 =
2
a +
2
a =2
2
a
or,OP 2 a
From the definition of trigonometric ratios, we get
21
2sin 45
aa
OP$ PM
,
21
2cos 45
aa
OP$ OM
,tan 45 1
aa
OM$ PM2
sin 451
cosec 45
q$ , 2
cos 451
sec 45
q$ , 1
tan 451
cot 45
q$9 ⋅7 Trigonometric ratios of complementary angles
We know, if the sum of two acute angles is 90 $, one of
them is called complementary angle to the other. For
example, 30 $and 60 $; 15 $and 75 $are complementary
angles to each other.
In general, the angles θ and ( 90 $θ) are
complementary angles to each other.