untitled

(Barré) #1

i.e.,b:a d:c
(2) If a:b c:dthena:c b:d [alternendo]


Proof : Given that,
d


c
b

a

?ad bc [multiplying both the sides by bd]

or,
cd

bc
cd

ad
[dividing both the sides by cdwhere cz 0 ,dz 0 ]

or,
d

b
c

a

i.e.,a:c b:d

(3) If a:b c:d then
d


c d
b

a b 

[componendo]

Proof : Given that,
d


c
b

a

?  1  1
d

c
b

a [Adding 1 to both the sides]

i.e.,
d

c d
b

a b 


(4) If a:b c:d then
d


c d
b

a b 

[ dividendo]

Proof : a:b c:d


?  1  1
d

c
b

a
[subtracting 1 from both the sides]

i.e.,
d

c d
b

a b 


(5) If a:b c:d then
c d


c d
a b

a b





 [componendo – dividendo]

Proof : Given that,
d


c
b

a

By componendo, ..............(i)
d

c d
b

a b 


Again by dividendo,
d

c d
b

a b 


or,
c d

d
a b

b



[by invertendo] ............. ( ii)
Free download pdf