i.e.,b:a d:c
(2) If a:b c:dthena:c b:d [alternendo]
Proof : Given that,
d
c
b
a
?ad bc [multiplying both the sides by bd]
or,
cd
bc
cd
ad
[dividing both the sides by cdwhere cz 0 ,dz 0 ]
or,
d
b
c
a
i.e.,a:c b:d
(3) If a:b c:d then
d
c d
b
a b
[componendo]
Proof : Given that,
d
c
b
a
? 1 1
d
c
b
a [Adding 1 to both the sides]
i.e.,
d
c d
b
a b
(4) If a:b c:d then
d
c d
b
a b
[ dividendo]
Proof : a:b c:d
? 1 1
d
c
b
a
[subtracting 1 from both the sides]
i.e.,
d
c d
b
a b
(5) If a:b c:d then
c d
c d
a b
a b
[componendo – dividendo]
Proof : Given that,
d
c
b
a
By componendo, ..............(i)
d
c d
b
a b
Again by dividendo,
d
c d
b
a b
or,
c d
d
a b
b
[by invertendo] ............. ( ii)