i.e.,b:a d:c
(2) If a:b c:dthena:c b:d [alternendo]
Proof : Given that,
d
c
ba?ad bc [multiplying both the sides by bd]or,
cdbc
cdad
[dividing both the sides by cdwhere cz 0 ,dz 0 ]or,
db
cai.e.,a:c b:d(3) If a:b c:d then
d
c d
ba b
[componendo]Proof : Given that,
d
c
ba? 1 1
dc
ba [Adding 1 to both the sides]i.e.,
dc d
ba b
(4) If a:b c:d then
d
c d
ba b
[ dividendo]Proof : a:b c:d
? 1 1
dc
ba
[subtracting 1 from both the sides]i.e.,
dc d
ba b
(5) If a:b c:d then
c d
c d
a ba b
[componendo – dividendo]Proof : Given that,
d
c
baBy componendo, ..............(i)
dc d
ba b
Again by dividendo,
dc d
ba b
or,
c dd
a bb
[by invertendo] ............. ( ii)