0DWK,;;)RUPD
12 21 12 211
bc bc ab abx
, or
12 2112 21
ab abbc bc
x
Again,
12 21 12 21
1
ca ca ab aby
, or
12 2112 2 1
ab abca ca
y
? The solution of the given equations : ̧ ̧
¹
·
̈ ̈
©§
12 211 2 21
12 2112 21
ab abca ca
ab abbc bc
(x,y) ,We observe :
Equations Relation between xand y Illustration00
2 2 21 1 1
ax by cax by c
12 21 12 21 12 211
ca ca ab aby
bc bcx
x y 12 2 2 2 21 1 1 1 1
a b c a ba b c a b[N.B. : The method of cross-multiplication can also be applied by keeping the
constant terms of both equations on the right hand side. In that case, changes of sign
will occur ; but the solution will remain same.]
Activity : If the system of equations¿¾½
3 04 7 0
x yx y
are expressed as the system of equations
¿¾½
002 2 21 1 1
ax by cax by c
,find the values of a 1 ,b 1 ,c 1 ,a 2 ,b 2 ,c 2.Example 3. Solve by the method of cross-multiplication : 6 xy 1
3 x 2 y 13
Solution : Making the right hand side of the equations 0 (zero) by transposition, we get,
3 2 13 06 1 0
x yx y comparing the equations with¿¾½
00
2 2 21 1 2 1
ax by cax by c
respectively,we get, a 1 6 ,b 1 1 ,c 1 1
a 2 3 ,b 2 2 ,c 2 13By the method of cross-multiplication, we get,
12 21 12 21 12 211
ca ca ab aby
bc bcx
Illustration :
x y 12 2 2 2 21 1 1 1 1
a b c a ba b c a b