untitled

(Barré) #1
8
2 3


x y

or 8
6


3 2
x y

or 3 x 2 y 48 0


Again, 3 3
4

5
 y 
x

or 3
4

5 12

x y

or 5 x 12 y 12 0

? the given equations are : 3 x 2 y 48 0
5 x 12 y 12 0
By the method of cross-multiplication, we get,


3 12 5 2

1
2 12 12 48 48 5 12 3 u  u
 u  u
u ( )u( ) ( ) ( )

x y

x y 1

5 12 12 5 12

3 2 48 3 2
 



or
36 10


1
24 576 240 36  
 


x y

or
46


1
552 276 



x y

or
46


1
552 276

x y

?
46


1
552

x
or, 12
46

552
x

Again,
46


1
276

y
, or 6
46

276
y

? Solution (x,y) ( 12 , 6 )


Verification of the correctness of the solution :


Putting the values of xandy in given equations, we get,


In 1st equation, L.H.S. = 6 2
3


6
2

12
2 3

  
x y

8 R.H.S.

In 2nd equation, L.H.S. = 3 6
4


5 12
3
4

5
 u
u
 y
x

15  18  3 = R.H.S.
? the solution is correct.
Example 6. Solve by the method of cross-multiplication : axby ab bxay.
Solution : Given equations are


¿

¾

½



bx ay ab

ax by ab
or,
¿

¾

½
 

 
0

0
bx ay ab

ax by ab

By the method of cross-multiplication, we get,

Free download pdf