8
2 3
x yor 8
6
3 2
x yor 3 x 2 y 48 0
Again, 3 3
45
y
xor 3
45 12
x yor 5 x 12 y 12 0? the given equations are : 3 x 2 y 48 0
5 x 12 y 12 0
By the method of cross-multiplication, we get,
3 12 5 21
2 12 12 48 48 5 12 3 u u
u u
u ( )u( ) ( ) ( )x yx y 15 12 12 5 123 2 48 3 2
or
36 10
1
24 576 240 36
x yor
46
1
552 276
x yor
46
1
552 276x y?
46
1
552x
or, 12
46552
xAgain,
46
1
276y
, or 6
46276
y? Solution (x,y) ( 12 , 6 )
Verification of the correctness of the solution :
Putting the values of xandy in given equations, we get,
In 1st equation, L.H.S. = 6 2
3
6
212
2 3
x y8 R.H.S.In 2nd equation, L.H.S. = 3 6
4
5 12
3
45
u
u
y
x15 18 3 = R.H.S.
? the solution is correct.
Example 6. Solve by the method of cross-multiplication : axby ab bxay.
Solution : Given equations are
¿¾½
bx ay abax by ab
or,
¿¾½
00
bx ay abax by abBy the method of cross-multiplication, we get,